PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 16 | 2 |
Tytuł artykułu

Stable isotopes reveal that little brown bats have a broader dietary niche than northern long-eared bats

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Stable isotope analysis (SIA) was used to quantify intra- and interspecific variation in the δ13C and δ15N values in plagiopatagium tissue of little brown (Myotis lucifugus) and northern long-eared (M. septentrionalis) bats in several regions of the Canadian Maritimes where they occur in sympatry. There was large intraspecific variation in the δ13C of M. lucifugus, with the range exceeding 30‰, whereas the range of δ13C values observed in M. septentrionalis was less than 7‰. Similarly, the standard ellipse area of M. lucifugus was larger than that of M. septentrionalis at all sites and together, these data support the contention that M. lucifugus has broader dietary niche breadth than M. septentrionalis. Some M. lucifugus from Fundy National Park, New Brunswick exhibited very low δ13C values, suggesting an energy input from an unknown source, possibly with carbon assimilated from biogenic methane. High δ13C values for M. lucifugus from Brier Island, Nova Scotia are consistent with a diet that is at least partially derived from marine sources. Finally, δ15N values for both species from Prince Edward Island were high relative to New Brunswick or Nova Scotia, suggesting inputs of anthropogenically-derived nitrogen from a more agriculturally-intensive landscape.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
16
Numer
2
Opis fizyczny
p.315-325,fig.,ref.
Twórcy
autor
  • Department of Biology, Saint Mary's University, Halifax, NS, B3H 3C3, Canada
autor
  • Department of Biology, Saint Mary's University, Halifax, NS, B3H 3C3, Canada
autor
  • Department of Biology, Mount Saint Vincent University, Halifax, NS, B3M 2J6, Canada
  • Department of Biology, Saint Mary's University, Halifax, NS, B3H 3C3, Canada
autor
  • Department of Biology, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
Bibliografia
  • 1. L. Acharya , and M. B. Fenton . 1999. Bat attacks and moth defensive behaviour around street lights. Canadian Journal of Zoology, 77: 27–33. Google Scholar
  • 2. R. A. Adams 1996. Size specific resource use in juvenile little brown bats, Myotis lucifugus (Chiroptera: Vespertilionidae): Is there an ontogenetic shift? Canadian Journal of Zoology, 74: 1204–1210. Google Scholar
  • 3. I. Ahlén , H. J. Baagøe , and L. Bach . 2009. Behaviour of Scandinavian bats during migration and foraging at sea. Journal of Mammalogy, 90: 1318–1323. Google Scholar
  • 4. E. L. P. Anthony 1988. Age determination in bats. Pp. 47–58, in Ecological and behavioral methods for the study of bats ( T. H. Kunz , ed.). Smithsonian Institution Press, Washington, D.C., 533 pp. Google Scholar
  • 5. E. L. P. Anthony , and T. H. Kunz . 1977. Feeding strategies of the little brown bat, Myotis lucifugus, in southern New Hampshire. Ecology, 58: 775–786. Google Scholar
  • 6. R. Arlettaz , N. Perrin , and J. Hausser . 1997. Trophic resource partitioning and competition between the two sibling bat species Myotis myotis and Myotis blythii. Journal of Animal Ecology, 66: 897–911. Google Scholar
  • 7. R. M. R. Barclay 1991. Population structure of temperate zone insectivorous bats in relation to foraging behaviour and energy demand. Journal of Animal Ecology, 60: 165–178. Google Scholar
  • 8. J. J. Belwood , and M. B. Fenton . 1976. Variation in the diet of Myotis lucifugus (Chiroptera: Vespertilionidae). Canadian Journal of Zoology, 54: 1674–1678. Google Scholar
  • 9. M. Ben-David and E. A. Flaherty . 2012. Theoretical and analytical advances in mammalian isotope ecology: an introduction. Journal of Mammalogy, 93: 309–311. Google Scholar
  • 10. P. M. Bennett , and K. A. Hobson . 2009. Trophic structure of a boreal forest arthropod community revealed by stable isotope (δ13C, δ15N) analyses. Entomological Science, 12: 17–24. Google Scholar
  • 11. V. Brack , and J. O. Whitaker Jr. 2001. Foods of the northern myotis, Myotis septentrionalis, from Missouri and Indiana, with notes on foraging. Acta Chiropterologica, 3: 203–210. Google Scholar
  • 12. H. G. Broders 2003. Summer roosting and foraging behaviour of sympatric Myotis septentrionalis and M. lucifugus. Ph.D. Thesis, University of New Brunswick, Fredericton, NB, Canada, 192 pp. Google Scholar
  • 13. H. G. Broders , G. M. Quinn , and G. J. Forbes . 2003. Species status, and the spatial and temporal patterns of activity of bats in southwest Nova Scotia, Canada. Northeastern Naturalist, 10: 383–398. Google Scholar
  • 14. S. E. Bunn , and P. I. Boon . 1993. What sources of organic carbon drive food webs in billabongs? Study based on stable isotope analysis. Oecologia, 96: 85–94. Google Scholar
  • 15. T. C. Carter , M. A. Menzel , S. F. Owen , J. W. Edwards , J. M. Menzel , and W. M. Ford . 2003. Food habits of seven species of bats in the Allegheny Plateau and Ridge and Valley of West Virginia. Northeastern Naturalist, 10: 83–88. Google Scholar
  • 16. B. S. Chisholm , D. E. Nelson , and H. P. Schwarcz . 1982. Stable-carbon isotope ratios as a measure of marine versus terrestrial protein in ancient diets. Science, 216: 1131–1132. Google Scholar
  • 17. E. L. Clare , W. O. C. Symondson , H. G. Broders , F. Fabianek , E. E. Fraser , A. Mackenzie , A. Boughen , R. Hamilton , C. K. R. Willis , F. Martinez-Nuñez , et al. 2014. The diet of Myotis lucifugus across Canada: assessing foraging quality and diet variability. Molecular Ecology, 23: 3618–3632. Google Scholar
  • 18. J. Cole 2013. Freshwater in flux. Nature Geoscience, 6: 13–14. Google Scholar
  • 19. A. Cree , G. L. Lyon , L. Cartland-Shaw , and C. Tyrrell . 1999. Stable carbon isotope ratios as indicators of marine versus terrestrial inputs to the diets of wild and captive tuatara (Sphenodon punctatus). New Zealand Journal of Zoology, 26: 243–253. Google Scholar
  • 20. P. M. Cryan , C. A. Stricker , and M. B. Wunder . 2012. Evidence of cryptic individual specialization in an opportunistic insectivorous bat. Journal of Mammalogy, 93: 381–389. Google Scholar
  • 21. P. A. del Giorgio , and R. L. France . 1996. Ecosystem-specific patterns in the relationship between zooplankton and POM or microplankton δ13C. Limnology and Oceanography, 41: 359–365. Google Scholar
  • 22. M. J. DeNiro , and S. Epstein . 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta, 42: 495–506. Google Scholar
  • 23. M. J. DeNiro , and S. Epstein . 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta, 45: 341–351. Google Scholar
  • 24. D. J. Des Marais , J. M. Mitchell , W. G. Meinschein , and J. M. Hayes . 1980. The carbon isotope biogeochemistry of the individual hydrocarbons in bat guano and the ecology of insectivouous bats in the region of Carlsbad, New Mexico. Geochimica et Cosmochimica Acta, 44: 2075–2086. Google Scholar
  • 25. J. N. Dunlop , and R. D. Bullen . 2011. Habitat use and trophic structure in a microbat assemblage on the edge of the southern rangelands, Western Australia: insights from stable isotope analysis. Rangeland Journal, 33: 1–7. Google Scholar
  • 26. P. A. Faure , J. H. Fullard , and J. W. Dawson . 1993. The gleaning attacks of the northern long-eared bat, Myotis septentrionalis, are relatively inaudible to moths. Journal of Experimental Biology, 178: 173–189. Google Scholar
  • 27. M. B. Fenton , and G. K. Morris . 1976. Opportunistic feeding by desert bats (Myotis spp.). Canadian Journal of Zoology, 54: 526–530. Google Scholar
  • 28. M. B. Fenton , C. G. V. Dejong , G. P. Bell , D. B. Campbell , and M. Laplante . 1980. Distribution, parturition dates, and feeding of bats in south central British Columbia. Canadian Field-Naturalist, 94: 416–420. Google Scholar
  • 29. J. Grey 2002. A chironomid conundrum: queries arising from stable isotopes. Verhandlungen des Internationalen Verein Limnologie, 28: 102–105. Google Scholar
  • 30. C. E. Hebert , and L. I. Wassenaar . 2001. Stable nitrogen isotopes in waterfowl feathers reflect agricultural land use in western Canada. Environmental Science & Technology, 35: 3482–3487. Google Scholar
  • 31. L. E. Henderson , L. J. Farrow , and H. G. Broders . 2009. Summer distribution and status of the bats of Prince Edward Island, Canada. Northeastern Naturalist, 16: 131–140. Google Scholar
  • 32. L. G. Herrera , K. A. Hobson , A. Manzo , D. Estrada , V. Sánchez-Cordero , and G. Méndez . 2001. The role of fruits and insects in the nutrition of fmgivorous bats: Evaluating the use of stable isotope models. Biotropica, 33: 520–528. Google Scholar
  • 33. M. B. C. Hickey , L. Acharya , and S. Pennington . 1996. Resource partitioning by two species of vespertilionid bats (Lasiurus cinereus and Lasiurus borealis) feeding around street lights. Journal of Mammalogy, 77: 325–334. Google Scholar
  • 34. K. A. Hobson 2007. Isotopic tracking of migrant wildlife. Pp. 155–175, in Stable isotopes in ecology and environmental science, 2nd edition ( R. Michener and K. Lajtha , eds.). Blackwell Publishing, Oxford, UK, 566 pp. Google Scholar
  • 35. K. A. Hobson , H. L. Gibbs , and M. L. Gloutney . 1997. Preservation of blood and tissue samples for stable-carbon and stable-nitrogen isotope analysis. Canadian Journal of Zoology, 75: 1720–1723. Google Scholar
  • 36. L. A. Huckstadt , C. P. Rojas , and T. Antezana . 2007. Stable isotope analysis reveals pelagic foraging by the southern sea lion in central Chile. Journal of Experimental Marine Biology and Ecology, 347: 123–133. Google Scholar
  • 37. G. E. Hutchinson 1957. Concluding remarks. Population studies: animal ecology and demography. Cold Spring Harbour Symposium on Quantitative Biology, 22: 415–427. Google Scholar
  • 38. A. L. Jackson , R. Inger , A. C. Parnell , and S. Bearhop . 2011. Comparing isotopic niche widths among and within communities: SIBER — Stable Isotope Bayesian Ellipses in R. Journal of Animal Ecology, 80: 595–602. Google Scholar
  • 39. M. C. Jackson , I. Donohue , A. L. Jackson , J. R. Britton , D. M. Harper , and J. Grey . 2012. Population-level metrics of trophic structure based on stable isotopes and their application to invasion ecology. PLoS ONE, 7: e31757. Google Scholar
  • 40. R. I. Jones , and J. Grey . 2004. Stable isotope analysis of chironomid larvae from some Finnish forest lakes indicates dietary contribution from biogenic methane. Boreal Environment Research, 9: 17–23. Google Scholar
  • 41. R. I. Jones , and J. Grey . 2011. Biogenic methane in freshwater food webs. Freshwater Biology, 56: 213–229. Google Scholar
  • 42. T. S. Jung , I. D. Thompson , R. D. Titman , and A. P. Applejohn . 1999. Habitat selection by forest bats in relation to mixed-wood stand types and structure in central Ontario. Journal of Wildlife Management, 63: 1306–1319. Google Scholar
  • 43. J. F. Kelly 2000. Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Canadian Journal of Zoology, 78: 1–27. Google Scholar
  • 44. S. I. Kiyashko , T. Narita , and E. Wada . 2001. Contribution of methanotrophs to freshwater macroinvertebrates: evidence from stable isotope ratios. Aquatic Microbial Ecology, 24: 203–207. Google Scholar
  • 45. T. H. Kunz 1974. Feeding ecology of a temperate insectivorous bat (Myotis velifer). Ecology, 55: 693–711. Google Scholar
  • 46. A. Kurta , and J. O. Whitaker Jr. 1998. Diet of the endangered Indiana bat (Myotis sodalis) on the northern edge of its range. American Midland Naturalist, 140: 280–286. Google Scholar
  • 47. M. J. Lacki , and J. T. Hutchinson . 1999. Communities of bats (Chiroptera) in the Grayson Lake Region, northeastern Kentucky. Journal of the Kentucky Academy of Science, 60: 9–14. Google Scholar
  • 48. R. K. LaVal , R. L. Clawson , M. L. LaVal , and W. Caire . 1977. Foraging behaviour and nocturnal activity patterns of Missouri bats, with emphasis on endangered species Myotis grisescens and Myotis sodalis. Journal of Mammalogy, 58: 592–599. Google Scholar
  • 49. C. A. Layman , D. A. Arrington , C. G. Montana , and D. M. Post . 2007. Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology, 88: 42–48. Google Scholar
  • 50. Y. F. Lee , and G. F. McCracken . 2004. Flight activity and food habits of three species of Myotis bats (Chiroptera: Vespertilionidae) in sympatry. Zoological Studies, 43: 589–597. Google Scholar
  • 51. C. W. Lindau , R. D. Delaune , and D. P. Alford . 1997. Monitoring nitrogen pollution from sugarcane runoff using 15N analysis. Water Air and Soil Pollution, 98: 389–399. Google Scholar
  • 52. S. A. Macko , and N. E. Ostrom . 1994. Pollution studies using stable isotopes. Pp. 45–62, in Stable isotopes in ecology and environmental science ( K. Lajtha and R. Michener , eds.). Blackwell Scientific, Oxford, UK, 316 pp. Google Scholar
  • 53. J. W. McCelland , and I. Valiela . 1998. Linking nitrogen in estuarine producers to land-derived sources. Limnology and Oceanography, 43: 577–585. Google Scholar
  • 54. N. L. McKenzie , and J. K. Rolfe . 1986. Structure of bat guilds in the Kimberley Mangroves, Australia. Journal of Animal Ecology, 55: 401–420. Google Scholar
  • 55. A. M. Meckstroth , A. K. Miles , and S. Chandra . 2007. Diets of introduced predators using stable isotopes and stomach contents. Journal of Wildlife Management, 71: 2387–2392. Google Scholar
  • 56. L. Méndez , and S. T. Alvarez-Castañeda . 2000. Comparative analysis of heavy metals in two species of ichthyophagous bats Myotis vivesi and Noctilio leporinus. Bulletin of Environmental Contamination and Toxicology, 65: 51–54. Google Scholar
  • 57. H. Mizutani , Y. Kabaya , and E. Wada . 1991. Nitrogen and carbon isotope compositions relate linearly in cormorant tissues and its diet. Isotopenpraxis, 27: 166–168. Google Scholar
  • 58. S. D. Newsome , C. Martinez del Rio , S. Bearhop , and D. L. Phillips . 2007. A niche for isotopic ecology. Frontiers in Ecology and the Environment, 5: 429–436. Google Scholar
  • 59. S. D. Newsome , J. D. Yeakel , P. V. Wheatley , and M. T. Tinker . 2012. Tools for quantifying isotopic niche space and dietary variation at the individual and population level. Journal of Mammalogy, 93: 329–341. Google Scholar
  • 60. U. M. Norberg , and J. M. V. Rayner . 1987. Ecological morphology and flight in bats (Mammalia: Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philosophical Transactions of the Royal Society of London, 316B: 335–427. Google Scholar
  • 61. B. J. Peterson , and B. Fry . 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics, 18: 293–320. Google Scholar
  • 62. D. M. Post , C. A. Layman , D. A. Arrington , G. Takimoto , J. Quattrochi , and C. G. Montaña . 2007. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia, 152: 179–189. Google Scholar
  • 63. A. R. Rabinowitz , and M. D. Tuttle . 1982. A test of the validity of two currently used methods of determining bat prey preferences. Acta Theriologica, 27: 283–293. Google Scholar
  • 64. J. M. Ratcliffe , and J. W. Dawson . 2003. Behavioural flexibility: the little brown bat, Myotis lucifugus, and the northern long-eared bat, M. septentrionalis, both glean and hawk prey. Animal Behaviour, 66: 847–856. Google Scholar
  • 65. H.-U. Schnitzler , and E. K. V. Kalko . 2001. Echolocation by insect-eating bats. Bioscience, 51: 557–569. Google Scholar
  • 66. B. X. Semmens , E. J. Ward , J. W. Moore , and C. T. Darimont . 2009. Quantifying inter- and intra-population niche variability using hierarchical Bayesian stable isotope mixing models. PLoS ONE, 4: e6187. Google Scholar
  • 67. B. M. Siemers , S. Greif , I. Borissov , S. L. Voigt-Heucke , and C. C. Voigt . 2011. Divergent trophic levels in two cryptic sibling bat species. Oecologia, 166: 69–78. Google Scholar
  • 68. R. S. Sikes , W. L. Gannon , and the Animal Care and Use Committee of the American Society of Mammalogists. 2011. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. Journal of Mammalogy, 92: 235–253. Google Scholar
  • 69. R. J. Smith , K. A. Hobson , H. N. Koopman , and D. M. Lavigne . 1996. Distinguishing between populations of fresh- and salt-water harbour seals (Phoca vitulina) using stable-isotope ratios and fatty acid profiles. Canadian Journal of Fisheries and Aquatic Sciences, 53: 272–279. Google Scholar
  • 70. G. Somers , B. Raymond , and W. Uhlman . 1999. Prince Edward Island water quality interpretive report. Canada — Prince Edward Island Water Annex. Prince Edward Island Department of Fisheries, Aquaculture, and Environment, Charlottetown, 67 pp. Google Scholar
  • 71. P. Stapp 2002. Stable isotopes reveal evidence of predation by ship rats on seabirds on the Shiant Islands, Scotland. Journal of Applied Ecology, 39: 831–840. Google Scholar
  • 72. A. R. Sullivan , J. K. Bump , L. A. Kruger , and R. O. Peterson . 2012. Bat-cave catchment areas: using stable isotopes (SD) to determine the probable origins of hibernating bats. Ecological Applications, 22: 1428–1434. Google Scholar
  • 73. J. C. Sullivan , K. J. Buscetta , R. H. Michener , J. O. Whitaker Jr. , J. R. Finnerty , and T. H. Kunz . 2006. Models developed from δ13C and δ15N of skin tissue indicate non-specific habitat use by the big brown bat (Eptesicus fuscus). Ecoscience, 13: 11–22. Google Scholar
  • 74. M. Uzaki , H. Mizutani , and E. Wada . 1991. Carbon isotope composition of CH4 from rice paddies in Japan. Biogeochemistry, 13: 159–175. Google Scholar
  • 75. M. J. Vander Zanden , Y. Vadeboncoeur , M. W. Diebel , and E. Jeppesen . 2005. Primary consumer stable nitrogen isotones as indicators of nutrient source. Environmental Science & Technology, 39: 7509–7515. Google Scholar
  • 76. C. C. Voigt , F. Matt , R. Michener , and T. H. Kunz . 2003. Low turnover rates of carbon isotopes in tissues of two nectar-feeding bat species. Journal of Experimental Biology, 206: 1419–1427. Google Scholar
  • 77. J. O. Whitaker Jr . 1972. Food habits of bats from Indiana. Canadian Journal of Zoology, 50: 877–883. Google Scholar
  • 78. J. O. Whitaker Jr. , and R. Long . 1998. Mosquito feeding by bats. Bat Research News, 39: 59–61. Google Scholar
  • 79. J. O. Whitaker Jr. , G. F. McCracken , and B. M. Siemers . 2009. Food habits analysis of insectivorous bats. Pp. 567–592, in Ecological and behavioral methods for the study of bats ( T. H. Kunz and S. Parsons , eds.). Johns Hopkins University Press, Baltimore, Maryland, 556 pp. Google Scholar
  • 80. D. W. Yalden , and P. A. Morris . 1975. The lives of bats. David and Charles, London, 247 pp. Google Scholar
Uwagi
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-396f5153-f3e2-4036-921a-85694f293854
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.