PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2002 | 481 | 1 |
Tytuł artykułu

Genetyczne uwarunkowanie tolerancji na stresy abiotyczne u roślin

Autorzy
Treść / Zawartość
Warianty tytułu
EN
Genetics of plant tolerance to abiotic stresses
Języki publikacji
PL
Abstrakty
PL
Reakcje roślin na fizyczne czynniki środowiska są bardzo złożone. Można je obserwować na różnych poziomach, począwszy od zmian w intensywności podstawowych procesów biochemicznych, takich jak: oddychanie, fotosynteza czy replikacja DNA, aż po zmiany morfologiczne organów lub całych organizmów. Badania reakcji roślin na stresy mają dwa podstawowe cele; pierwszy to lepsze, bardziej dogłębne poznanie otaczającego nas świata, drugi praktyczny - ukierunkowany na zastosowanie zdobytej wiedzy w rolnictwie. Badania aplikacyjne prowadzone są z wysoką intensywnością, ponieważ prawie wszystkie środowiska wykorzystywane w produkcji roślinnej są zmienne i oferują warunki odmienne od wymaganych przez rośliny do optymalnego wzrostu i plonowania. Tolerancja na stres jest pojęciem bardzo ogólnym. Można ją zdefiniować jako zdolność rośliny do utrzymywania procesów życiowych na jak najmniej zmienionym poziomie, w warunkach środowiska znacznie odbiegających od optymalnych. Z punktu widzenia genetyki tolerancja na stres jest cechą o charakterze ciągłym, dziedziczoną wielogenowo. Do najistotniejszych czynników stresowych zaliczyć należy niską temperaturę z podziałem na niskie temperatury powyżej zera i mróz, wysoką temperaturę, suszę, zasolenie podłoża i światło. Ostatni z wymienionych czynników stresowych nie był omawiany ze względu na niedostatek danych opisujących genetyczne uwarunkowanie odporności na ten czynnik stresowy. W pracy zasygnalizowano również znaczenie substancji osmotycznie czynnych w ochronie organizmów przed stresami abiotycznymi.
EN
Plant reactions to physical factors of the environment are very complex. They can be observed and studied at various levels, starting from the changes in the intensity of very basic biochemical processes such as photosynthesis or DNA replication up to alterations in morphology of some organs or the whole organism. Studies of plant reaction to stress have two main aims. The first one is better understanding of the surrounding world. The second one is utilitarian. This approach is focused on application of the gathered knowledge in agriculture. As almost all environments used for plant production are very far from being optimal in regard to plant productivity, significant emphasis is placed on the studies of genes involved in reaction to physical stresses. The main recipients of this research are plant breeders struggling to select new varieties more suited to harsh and unstable conditions. Stress tolerance is a very general notion. In the simplest way it can be described as plant ability to cope with stress. In terms of genetic, stress tolerance has a complex poligenic character. The main types of abiotic stresses plants must cope with are: temperature (high or low with distinct division into low temperatures above zero and frost), drought, light and salinity. In real life very often crops are subjected to two or even more stressors at the same time, e.g. high temperatures are very often accompanied by drought and soil salinity. Situation is further complicated by the fact that many genes are triggered by more than one stressor. Due to scarcity of information, problems of light stress tolerance genetics have not been discussed. Importance of osmoprotecting solutes was underlined in a separate chapter.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
481
Numer
1
Opis fizyczny
s.49-60,tab.,bibliogr.
Twórcy
autor
Bibliografia
  • Amitai-Zeigerson H., Scolnik Р.A., Bar-Zvi D. 1995. Tomato Asr1 mRNA and protein are transiently expressed following salt stress, osmotic stress and treatment with abscisic acid. Plant Sci. 110: 205-213.
  • Avsian-Kretchmer O., Eshdat Y., Gueta-Dahan Y., Ben-Hayyim G. 1999. Regulation of stress-induced phospholipid glutatione peroxidase in citrus. Planta 209: 469-77.
  • Bailey S., Walters R.G., Jansson S., Horton R 2001. Acclimation of Arabidopsis thaliana to light environment: the existence of separate low light and high light responses. Planta 213: 794-801.
  • Campalans A., Pages M., Messeguer R. 2000. Protein analysis during almond embryo development. Identification and characterization of late embryogenesis abundant protein. Plant Physiol. Biochem. 28: 449-457.
  • Choi D.-W., Zhu В., Close T.J. 1999. The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv. Dicktoo. Theor. Appl. Genet. 98: 1234-1247.
  • Croce R., Breton J., Bassi R. 1996. Conformational changes induced by fosforylation in the CP29 subunit of photosystem II. Biochemistry 35: 11142-11148.
  • Cuartero J., Fernandez-Munoz R. 1999. Tomato and salinity. Sci. Hort. 78: 83-125.
  • Dionisio-Sese M., Tobita S. 1998. Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 135: 1-9.
  • Droillard M.-J., Thibivilliers S., Cazale A.-C., Barbier-Brygoo H., Lauriere С. 2000. Protein kinases induced by osmotic stresses and elicitor molecules in tobacco cell suspensions: two crossroad MAP kinases and one osmoregulation-specific protein kinase. FEBS Lett. 474: 217-222.
  • Dyer J.M., Chapital D.C., Cary J.W., Pepperman A.B. 2001. Chilling-sensitive, post- transcriptional regulation of a plant fatty acid desaturase expressed in yeast. Bioch. Bioph. Res. Com. 282: 1019-1025.
  • Epstein E., Norlyn J.D., Rush D.W., Kingsbury R.W., Keij.y D.B., Cunningham G.A., Wrona A.F. 1980. Saline culture of crops: a genetic approach. Science 210: 399-404.
  • Espinosa-Ruiz A., Belles J.M., Serrano R., Culianez-Macia F.A. 1999. Arabidopsis thaliana AtHAL3: a flavoprotein related to salt and osmotic tolerance and plant growth. The Plant Journal 20(5): 529-539.
  • Fellner M., Sawhney V.K. 2001. Seed germination in tomato male-sterile mutant is resistant to osmotic, salt and low-temperature stresses. Theor. Appl. Genet. 102: 215-221.
  • Flowers T.J., Troke P.F., Yeo A.R. 1977. The mechanisms of salt tolerance inn halophytes. Annu. Rev. Plant Physiol. 28: 89-121.
  • Gorham J., Wyn Jones R.G., McDonnell E. 1985. Some mechanisms of salt tolerance in crop plants. Plant Soil 89: 15-10.
  • Hayes P.M., Biake Т., Chen T.H.H., Tragoonrung S., Chen F, Pan A., Liu B. 1993. Quantitative trait loci on barley (Hordeum vulgare L.) chromosome 7 associated with components of winterhardiness. Genome 36: 66-71.
  • Hirayama Т., Ohto C., Mizoguchi Т., Shinozuki K. 1995. A gene encoding a phosphatidylinositol-specific phospholipase с is induced by dehydration and salt stress in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA, 92: 3903-3907.
  • Ilami G., Nespoulous C., Huet J.-C., Vartanian N., Pernollet J.-C. 1997. Characterization of BnD22, a drought-induced protein expressed in Brassica napus leaves. Phytochem. 45: 1-8.
  • Ito K., Kusano Т., Tsutsumi K. 1999. A cold inducible bZIP protein in radish root regulated by calcium- and cycloheximide-mediated signals. Plant Sci. 142: 57-65.
  • Jonak С., Kiegerl. S., Ligtering W., Barker HJ., Huskisson N.S., Hirt H. 1996. Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proc. Natl. Acad. Sci. USA, 93: 11274-11279.
  • Joshi C.P., Klueva N.Y., Morrow K.J., Nguyen H.T. 1997. Expression of unique plastid-localized heat-shock protein is genetically linked to acquired termotolerance in wheat. Theor. Appl. Genet. 95: 834-841.
  • Kim J.C., Lee S.H., Cheong Y.H., Yoo C.-M., Lee S.I., Chun HJ., Yun D. J., Hong J.C., Lee S.Y., Lim C.O., Cho M.J. 2001. A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. The Plant J. 25: 247-259.
  • Kovarik A., Koukalova В., Bezdek M., Opatrny Z. 1997. Hypermetylation of tobacco heterochromatic loci in response to osmotic stress. Theor. Appl. Genet. 95: 301-306.
  • Kumar R.G., Shah K., Dubey R.S. 2000. Salinity induced behavioral changes in malate dehydrogenase and glutamate dehydrogenase activities in rice seedlings of differing salt tolerance. Plant Sci. 156: 23-34.
  • Lerner II.R. 1985. Adaptation to salinity at the plant cell level. Plant Soil 89: 3-14.
  • Li Z.-Y., Chen S.-Y. 2000. Differential accumulation of the S-adenosylmethionine decarboxylase transcript in rice seedlings in response to salt and drought stresses. Theor. Appl. Genet. 100: 782-788.
  • Li Z.-Y., Chen S.-Y. 2001. Isolation, characterization and chromosomal location of a novel zinc-finger protein gene that is down-regulated by salt stress. Theor. Appl. Genet. 102: 363-368.
  • Minhas D., GroverA. 1999. Transcript levels of genes encoding various glycolytic and fermentation enzymes change in response to abiotic stresses. Plant Sci. 146: 41-51.
  • Mizoguchi Т., Irie K., Hitayama Т., Hayashida N., Yamaguchi-Shinozaki K., Matsumoto K., Shinozaki K. 1996. A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabi- dopsis thaliana. Proc. Natl. Acad. Sci. USA 93: 765-769.
  • Moons A., De Keyser A., Van Montagu M. 1997. A group 3 LEA cDNA of rice, responsive to abscisic acid, but not to jasmonic acid, shows variety-specific differences in salt stress response. Gene 191: 197-204.
  • Olmos E., Hellin E. 1996. Mechanisms of salt tolerance in a cell line of Pisum sativum: biochemical and physiological aspects. Plant Sci. 120: 37-45.
  • Orvar B.L., Sangvan V., Omann E, Dhindsa R.S. 2000. Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. The Plant J. 23: 785-794.
  • Pakniyat H., Powell W., Baird E., Handley L.L., Robinson D., Scrimgeour C.M., Nevo E., Hackett C.A., Caligari P.D.S., Forster B.P. 1997. AFLP variation in wild barley (Hordeum spontaneum C. Koch) with reference to salt tolerance and associated ecogeography. Genome 40: 332-342.
  • Pareek A., Singla S.L., Grover A. 1998. Evidence for accumulation of a 55 kDa stress-related protein in rice and several other plant genera. Plant Sci. 134: 191-197.
  • Pernas M., Sanchez-Monge R., Salcedo G. 2000. Biotic and abiotic stress can induce cystatin expression in chestnut. FEBS Let. 467: 206-210.
  • Rathinasabapathi B. 2000. Metabolic engineering for stress tolerance: installing osmo- protectant synthesis pathways. Annu. Bot. 86: 709-716.
  • Rorat Т., Irzykowski W., Grygowicz W.J. 1997. Identification and expression of cold induced genes in potato (Solanum sogarandinum). Plant Sci. 124: 69-78.
  • Sari-Gorla M., Krajewski R, Di Fonzo N., Villa M., Frova C. 1999. Genetic analysis of drought tolerance in maize by molecular markers. Theor. Appl. Genet. 99: 289-295.
  • Seppanen M.M., Cardi Т., Hyokki M.B., Pehu E. 2000. Characterization and expression of cold-induced glutathione-S-transferase in freezing tolerant Solanum commersoni, sensitive S. tuberosum and their interspecific somatic hybrids. Plant Sci. 153: 125-133.
  • Savoure A., Hua X.-J., Bertauche N., Van Montagu M., Verbruggen n. 1997. Abscisic acid-independent and abscisic acid-dependent regulation of proline biosynthesis following cold and osmotic stress in Arabidopsis thaliana. Mol. Gen. Genet. 254: 104-109.
  • Shinwari Z.K., Nakashima K., Miura S., Kasuga M., Seki M., Yamaguchi-Shinozaki K., Shinozaki K. 1998. An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Bioch. Biophysic. Res. Com. 250: 161-170.
  • Shoji Т., Kato К., Sekine М., Yoshida K., Shinmyo A. 2000. Two types of hest shock factors in cultured tobacco cells. Plant Cell Rep. 19: 414-420.
  • Sripongpangkul K., Posa G.B.T., Senadhira D.W., Brar D., Huang N., Kiiusii D.S., Li Z.K. 2000. Genes/QTLs affecting flood tolerance in rice. Theor. Appl. Genet. 101: 1074-1081.
  • Tahtiharju S., Sangwan V., Monroy A.F., Dhindsa A.F., Borg M. 1997. The induction of kin genes in cold-acclimating Arabidopsis thaliana. Planta 203: 442-447.
  • Tal М. 1985. Genetics of salt tolerance in higher plants: theoretical and practical considerations. Plant Soil 89: 199-226.
  • Tamminen I., Makela E, Heino P., Palva Т.Е. 2001. Ectopic expression of ABI3 gene enhances freezing tolerance in response to abscisic acid and low temperature in Arabidopsis thaliana. The Plant J. 25: 1-8.
  • Thomashow M.F., Gilmour S.J., Stockinger E.J., Jaglo-Ottosen K.R., Zarka D.G. 2001. Role of the Arabidopsis CBF transcriptional activators in cold acclimation. Physiol. Plant. 112: 171-175.
  • Tozlu I., Guy C.L., Moore G.A. 1999. QTL analysis of Na+ and Cl accumulation related traits in an intergeneric ВС, progeny of Citrus and Poncirus under saline and nonsaline environments. Genome 42: 692-705.
  • Tripathy J.N., Zhang J., Robin S., Nguyen Th.T., Nguyen Н.Т. 2000. QTLs for cell- membrane stability mapped in rice (Oryza saliva L.) under drought stress. Theor. Appl. Genet. 100: 1197-1202.
  • Vinicov I. 1998. New molecular approaches to improving salt tolerance in crop plants. Annu. Bot. 82: 703-710.
  • Wei J.-Z., Tirajoh A., Effendy J., Plant A.I.. 2000. Characterization of salt-induced changes in gene expression in tomato (Lycopersicon esculentum) roots and the role played by abscisic acid. Plant Sci. 159: 135-148.
  • Xin Z., Browse J. 2000. Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ. 23: 893-902.
  • Yeo A.R. 1983. Salinity resistance: Physiologies and prices. Physiol. Plant. 58: 214-222.
  • Yoshiba y, Nanjo Т., Miura S., Yamaguchi-Shinozaki K. 1999. Stress-responsive and developmental regulation of Δ¹-pyrrolineS-carboxylate synthetase (P5CS1) gene expression in Arabidopsis thaliana. Bioch. Bioph. Res. Com. 261: 766-772.
  • Yu L.-X., Chamberland H., Lafontaine J.G., Tabaeizadeh Z. 1996. Negative regulation of gene expression of novel proline-, threonine- and glycine-rich protein by water stress in Lycopersicon chilense. Genome 39: 1185-1193.
  • Yu X.-M., Griffith M. 2001. Winter rye antifreeze activity in response to cold and drought but not abscisic acid. Physiol. Plant. 112: 78-86.
  • Zhang G.-Y., Guo Y, Chen S.-L., Chen S.-Y. 1995. RFLP tagging of salt tolerance in rice. Plant Sci. 110: 227-234.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-390a19a8-a583-4b6c-9513-46dfa7d76c9d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.