Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 5 |
Tytuł artykułu

Aquatic fungi and straminipilous organisms in the Lakes of the Ełckie District

Treść / Zawartość
Warianty tytułu
Języki publikacji
We analyzed the species composition of fungi and straminipilous organisms in relation to hydrochemical conditions in six lakes within the Ełckie Lake District. The mycological investigations conducted in two vegetative seasons (2014-15) identified 44 species (eight aquatic fungi and 36 straminipilous organisms). The largest number of fungus species were found in lakes Łaśmiady (23), Szarek (22), and Krzywe (20), and the fewest were detected in Ełckie (12), Rajgrodzkie (13), and Dręstwo (14). The diversity of the quantitative and qualitative composition of the mycobiota was probably associated with the content of biogenic compounds and organic substances in the water. The elevated levels of these parameters (lakes: Łaśmiady, Szarek, and Krzywe) stimulated the growth and development of fungi and straminipilous organisms, whereas very high levels of biogenic compounds and organic matter (Lake Ełckie) and their very low content (Lake Dręstwo) had an inhibitory effect. Among the isolated taxa, there were parasites of amphibians and their spawn, and fish and eggs, including Achlya americana, Ac. polyandra, Saprolegnia parasitica, and S. ferax. Some species included pathogens of crayfish and other aquatic crustaceans such as Myzocytium microsporum, M. zoophthorum, Aphanomyces astaci, and Ap. daphniae. Some fungi appeared to be potentially pathogenic to humans, like Aspergillus niger and Candida tropicalis. Such species as Achlya klebsiana, Ac. prolifera, Leptolegnia caudata, Nowakowskiella elegans, N. macrospora, Pythium inflatum, and Saprolegnia litoralis were common phytosaprobionts. Statistical analysis of the results was conducted to determine a correlation in the number of the species of fungi and straminipilous organisms with such hydrochemical parameters as the levels of oxygen, carbon dioxide, and biochemical oxygen demand within a five-day period (BOD5), chemical oxygen demand (COD), calcium carbohydrate, nitrate nitrogen, phosphates, chlorides, dry mass, dissolved substances, and suspension. The differences noted in the species composition of the mycobiota in the lakes studied resulted from, among other things, the physicochemical properties of water. Such parameters as the contents of oxygen, nitrate nitrogen, phosphates, dry residue, dissolved substances, and suspension showed a positive correlation, whereas carbon dioxide, BOD5, COD, calcium carbohydrate, and chlorides correlated negatively with the number of the isolated taxa.
Słowa kluczowe
Opis fizyczny
  • Departament of General Biology, Medical University, A. Mickiewicza 2C, 15-222 Bialystok, Poland
  • Departament of General Biology, Medical University, A. Mickiewicza 2C, 15-222 Bialystok, Poland
  • Departament of General Biology, Medical University, A. Mickiewicza 2C, 15-222 Bialystok, Poland
  • Department of Statistics and Medical Informatics, Szpitalna 37, 15-295 Bialystok, Poland
  • 1. VORONIN L.V. Zoosporic fungi in freshwater ecosystems. Inland Water Biol. 4, 341, 2008.
  • 2. WURZBACHER CH. M., BÄRLOCHER F., GROSSART H. P. Fungi in lake ecosystems. Aquat. Microb. Ecol. 59, 125, 2010 doi: 10.3354/ame01385
  • 3. BATKO A. Hydromycology – an overview. PWN, Warszawa, 5, 1975 [In Polish].
  • 4. PASCOAL C., CÁSSIO F. Linking fungal diversity to the functioning of freshwater ecosystems. In: SRIDHAR K.R., BÄRLOCHER F, HYDE K.D. (eds) Novel techniques and ideas in mycology. 1, 2008.
  • 5. GODLEWSKA A., KIZIEWICZ B., MUSZYŃSKA E., Mazalska B. Aquatic fungi and straminipilous organisms of the Augustowska Primeval Forest, Poland. Oceanol. Hydrobiol. St. 4, 451, 2013.
  • 6. LEPÉRE C., DOMAIZNN I., DEBROAS D. Unexpected importance of potential parasites in the composition of the freshwater small-eukaryote community. Appl. Environ. Microbiol. 74, 2940, 2008.
  • 7. GODLEWSKA A., KIZIEWICZ B., MUSZYŃSKA E., MAZALSKA B. Aquatic fungi and heterotrophic straminipiles from fishponds. Pol. J. Environ. Stud. 3, 615, 2012.
  • 8. CZECZUGA B. Hydromycoflora of thirty-one lakes in Ełk Lake District and adjacent waters with reference on the chemistry of the environment. Acta Mycol. 30 (1), 49, 1995.
  • 9. SEYMOUR R. L., FULLER M. S. Colletion and isolation of water molds (Saprolegniaceae) from water and soil. In : Fuller M. S., Jaworski A. (eds). Zoosporic Fungi in Teaching and Research. Southeastern Publishing, Athens. 125, 1987.
  • 10. JOHNSON T.W.Jr. The genus Achlya morphology and taxonomy. University of Michigan Press, Ann Arbor, 1, 1956.
  • 11. SEYMOURR. L. The genus Saprolegnia. Nova Hedwigia. 1-2, 1, 1970.
  • 12. DICK M.W. Keys to Pythium. College Estate Management Whiteknights, Reading, U. K. 64, 1990.
  • 13. PYSTINA K.A. Genus Pythium Pringsh. In: Melnik W.A. (eds). Definitorium Fungorum Rossiae. Classis Oomycetes. Sankt Petersburg, Nauka, pp. 5-125, 1998 [In Russian].
  • 14. KARLING J.S. Chytridiomycetarum Iconographia. An Illustrated and Brief Descriptive Guide to the Chytridiomycetes. Lubrecht and Cramer, Vaduz, 414, 1977.
  • 15. DICK M.W. The Peronosporomycetes. In: MCLAUGHLIN D.J., MCLAUGHLIN E.G., LENKE P. A. (eds). The Mycota VII. Part A. Systematics and Evolution. Springer- Verlag-Berlin-Heidelberg-New York, 39, 2001.
  • 16. GREENBERG A.L., CLESCERI L.S., EATON A.D. Standard Methods for the Examination of Water and Wastewater. American Public Health Assotiation, Washington, 1193, 1995.
  • 17. PABST S., SCHEIFHACKEN N., HESSELSCHWERDT J., WANTZEN K. Leaf litter degradation in the wave impact zone of a prealpine lake. Hydrobiologia 613,117, 2008.
  • 18. DIGBY A.L., GLEASON F.H., McGEE P.A. Some fungi in the Chytridiomycetes can asymilate both inorganic sources of nitrogen. Fungal Ecol. 3, 261, 2010.
  • 19. KRAUSS G-J., SOLÉ M., KRAUSS G., SCHLOSSER D., WESENBERG D & BÄRLOCHER F. Fungi in freshwaters – ecology, physiology and biochemical potencial. FEMS. Microbiol Rev. 35, 620, 2011. doi: 10.1111/j. 1574-6976.2011.00266
  • 20. MARANO A.V., PIRES-ZOTTARELLI C.L.A., BARRERA M.D., STECIOW M.M., GLEASON F.H. Diversity, role in decomposition, and succession of zoosporic fungi and straminipiles on submerged decaying leaves in a woodland stream. Hydrobiologia. 659, 93, 2011.
  • 21. GÓRNIAK A., WIĘCKO A., CUDOWSKI A. Fungi biomass in lowland rivers in North-Eastern Poland: effects of habitat conditions and nutrient concentration. Pol. J. Ecol. 4, 748, 2013.
  • 22. GODLEWSKA A., KIZIEWICZ B., MUSZYŃSKA E., MAZALSKA B. Fungi and straminipilous organisms found in ponds Białystok. Pol. J. Environ. Stud. 3, 369, 2009.
  • 23. MUSZYŃSKA E., KIZIEWICZ B., GODLEWSKA A., MILEWSKI R. Fungi and straminipilous organisms growing In the Narew river and its Chojen tributaries in Ne Poland. Pol. J. Environ. Stud. 2, 401, 2014.
  • 24. KIZIEWICZ B., NALEPA T.F. Some fungi and water molds of lake Michigan with amphasis on those associated with the benthic amphipod Diporeia sp. J. Great Lakes Res. 34, 774, 2008.
  • 25. CZECZUGA B., SEMENIUK A., CZECZUGASEMENIUK E. Straminipiles fungi growing on the alevins of the Nile tilapia in limnologically and trophically different water bodies. Afr. J. Res. 18, 1346, 2014.
  • 26. REKHA CHAUHAN. Fungal attack on Tilapia mossambicus in culture pond, leading to mass mortality of fishes. Int. J. Phram. Sci. Rev. Res. 7, 2014.
  • 27. CZECZUGA B., SEMENIUK-GRELL A., CZECZUGA-SEMENIUK E. Growth of mycotal species on the eggs of Cyprinus carpio in limnologically and trophically different water bodies. Afr. J. Res. 6, 482, 2015.
  • 28. PETRISKO J.E., PEARL CH.A., PILLIOD D.S., SHERIDAN P.P., WILLIAMS CH.F., PETERSON CH.R., BURY B.R. Saprolegniaceae identified on amphibian eggs throughout the Pacific Northwest, USA, by internal transcribed spacer sequences and phylogenetic analysis. Mycologia. 2, 171, 2008.
  • 29. CZECZUGA B., BARTEL R., SEMENIUK A., CZECZUGA-SEMENIUK E., MUSZYŃSKA E., GODLEWSKA A., MAZALSKA B., GROCHOWSKI A. Straminipilous organisms (Mycota) growing on the eggs of Atlantic salmon (Salmo salar L.) entering Polish rivers for spawning or reared in fresh water. Trends Comp. Biochem. Physiol. 15, 73, 2011a.
  • 30. CZECZUGA B., CZECZUGA-SEMENIUK E., SEMENIUK A. Microfungi-like oeganisms developing on the eggs of pink salmon Oncorhynchus gorbuscha. Cur. Trends Microbiol. 7, 21, 2011b.
  • 31. CZECZUGA B., CZECZUGA-SEMENIUK E., SEMENIUK A., SEMENIUK A., MUSZUŃSKA E. Zoosporic fungi and fugus-like organisms growing on the eggs of four species of sturgeonoid fish (Acipenseriformes). Trends Comp. Biochem. Physiol. 15, 83, 2011c.
  • 32. CZECZUGA B., CZECZUGA-SEMENIUK E., SEMENIUK A., SEMENIUKJ. Straminipiles (Oomycota) developing on the eggs of an catfish, Claris gariepinus Burchell in water bodies of Poland. Afr. J. Microbiol. Res. 20, 2378, 2013.
  • 33. GOZIAN R.E., MARSHALL W.L., LILJE O., JESSOP C.N,GLEASON F.H., ANDREOU D. Curent ecological understanding of fungal-like pathogens of fish; what lies beneath? Frontiers in Microbiol. 5 (62), 1, 2014.
  • 34. MONA S. ZAKI, OLFAT M. FAWAZI. Saprolegnia parasitica in fish (Review). Life Sci. J. 2, 156, 2015.
  • 35. KIZIEWICZ B., MUSZYŃSKA E., GODLEWSKA A. Occurrence fungi and funguj-like organisms potentially pathogenic for fish eggs in differential waters of Podlasie province, Poland. Wulffenia. 7, 464, 2015.
  • 36. MORTADA M.A., HUSSEIN M.M., HATAI K., NOMURA T. Saprolegniosis in salmonids and their egss in Japan. J. Wild. Dis. 1, 204, 2001.
  • 37. HABIB K.A., AL-MUKHTAR E.A., AL-SHAMMAN R.H. Characterization of Saprolegnia spp. Isolates of from infected eggs, fry and adults of common carp Cyprinus carpio L. based on molecular data in Al-Manahel and Al-Wahda fish hatcheries, in middle of Irag. J. Biot. Lett. 1, 72, 2014.
  • 38. CZECZUGA B., KOZŁOWSKA M., GODLEWSKA A., VELU.S.C. Moina makrospora (Straus): A plankton crustacean as a vector for fungus-like fish parasites. Turk J. Zool. 32, 19, 2008.
  • 39. CZECZUGA B., SEMENIUK A., GODLEWSKA A., CZECZUGA-SEMENIUK E., VELU C.S. Dead specimens of shrimp Streptocephalus dichotomus (Crustacea) as vectors of mycosis-inducing in fish aquacultures. Current Trends in Ecology.3, 54, 2012.
  • 40. CZECZUGA B., KOZŁOWSKA M., GODLEWSKA A. Zoosporic aqutic fungi growingon dead specimens of 29 freshwater crustacean species. Limnologica. 32, 180, 2002.
  • 41. CESARE C., NICOLA F., DANIELA Z., MOURILIA M., ALEBSANDRA P., LUCIANO R., ROSSELLA L. Confirmation of crayfish plague in Italy: detection of Aphanomyces astaci in white clawed crayfish. Dis. Aquat. Org. 89, 265, 2010.
  • 42. KIZIEWICZ B., KOZŁOWSKA M., GODLEWSKA A., MUSZYŃSKA E., MAZALSKA B. Water fungi occurrence in the River-bath Jurowce near Białystok. Wiad. Parazytol. 50, 143, 2004 [In Polish].
  • 43. DYNOWSKA M. Yeast-like fungi possesing bio-indicator properties isolated from the Łyna River. Acta Mycol. 32, 279, 1997 [In Polish].
  • 44. MEDEIROS A., KOHLER L., HAMDAN J., MISSAGIA B., BARBOSA F., ROSA C. Diversity and antifungal susceptibility of yeasts from tropical freshwater environments in southeastern Brazil. Water Res. 42, 392, 2008.
  • 45. CZECZUGA B., MUSZYNSKA E., GODLEWSKA A., MAZALSKA B. Aquatic fungi and fungus-like organisms growing on seeds of 131 plant taxa. Nova Hedwigia. 89, 451, 2009.
  • 46. CZECZUGA B., GODLEWSKA A., MAZALSKA B., MUSZYŃSKA E. Diversity of aquatic fungi and fungus-like organisms on fruits. Nova Hedwigia. 90, 123, 2010.
  • 47. CZECZUGA B., GODLEWSKA A., CZECZUGASRMENIUK E., SEMENIUK A., MUSZYŃSKA E. Influence on mycotal species diversity by different stem part sof submerged aquatic plants that inhibit the growth of aquatic organisms. Nova Hedwigia. 3-4, 335, 2015.
  • 48. MASSOUD M. Mycoflora associated with aquatic plants in ponds and lakes central west of Florida. USA. Sci. Res. Rep. 1, 1, 2012.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.