PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 31 | 3 |
Tytuł artykułu

Comparative effects of drought, salt, heavy metal and heat stresses on gamma-aminobutryric acid levels of sesame (Sesamum indicum L.)

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Gamma-aminobutryric acid (GABA) accumulation in response to diverse stresses is well known in plants; however, the comparative effects of different environmental stresses on GABA accumulation was not addressed in the same plant system. Here, we investigated GABA accumulation comparatively in sesame (Sesamum indicum L. cv. Cumhuriyet) plant under drought, salt, heavy metal (Se) and high-temperature stresses. Plants were stressed by application of 5% PEG-6000, 150 mM NaCl, 100 µg g⁻¹ Se and high temperature (50°C for 2 h). Root and shoot growth reduced after PEG, NaCl, Se and high-temperature treatments. Among these, heavy metal treatment had the highest and earliest effect on growth. GABA accumulation could be related to stress perception rather than protection in sesame plant if we consider that the adverse effects of different abiotic stresses on growth were not elevated by GABA.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
31
Numer
3
Opis fizyczny
p.655-659,fig.,ref.
Twórcy
autor
  • Department of Biology, Science Faculty, Ege University, Bornova, 35100 Izmir, Turkey
autor
  • Department of Biology, Science Faculty, Ege University, Bornova, 35100 Izmir, Turkey
autor
  • Department of Biology, Science Faculty, Ege University, Bornova, 35100 Izmir, Turkey
autor
  • Department of Biology, Science Faculty, Ege University, Bornova, 35100 Izmir, Turkey
autor
  • Department of Biology, Science Faculty, Ege University, Bornova, 35100 Izmir, Turkey
autor
  • Department of Biology, Science Faculty, Ege University, Bornova, 35100 Izmir, Turkey
Bibliografia
  • Ansari MI, Lee RH, Grace Chen SC (2005) A novel senescenceassociated gene encoding gamma-aminobutyric acid (GABA): pyruvate transaminase is upregulated during rice leaf senescence. Physiol Plant 123:1–8. doi:10.1111/j.1399-3054.2004. 00430.x
  • Bartyzel I, Pelczar K, Paszkowski A (2003) Functioning of the gamma-aminobutyrate pathway in wheat seedlings affected by osmotic stress. Biol Plant 47(2):221–225. doi:10.1023/B:BIOP. 0000022255.01125.99
  • Baum G, Lev-Yadun S, Fridmann Y, Arazi T, Katsnelson H, Zik M, Fromm H (1996) Calmodulin binding to glutamate decarboxlylase is required for regulation of glutamate and GABA metabolism and normal development in plants. EMBO J 15(12):2988–2996
  • Buve N, Rispail N, Laine P, Cliquet JB, Ourry A, Le Deunff E (2004) Putative role of GABA as a long distance signal in up-regulation of nitrate uptake in Brassica napus L. Plant Cell Environ 27:1035–1046. doi:10.1111/j.1365-3040.2004.01208.x
  • Bolarin MC, Santa-Cruz A, Cayuela E, Perez-Alfocea F (1995) Short term solute changes in leaves and roots of cultivated and wild tomato seedlings under salinity. J Plant Physiol 147:463–468
  • Bouche N, Lacombe B, Fromm H (2003) GABA signalling: a conserved and ubiquitous mechanism. Trends Cell Biol 13:607–610. doi:10.1016/j.tcb.2003.10.001
  • Bouche N, Fromm H (2004) GABA in plants: just a metabolite? Trends Plant Sci 9(3):110–115. doi:10.1016/j.tplants.2004.01.006
  • Carroll AD, Fox GG, Laurie S, Phillips R, Ratcliffe RG, Stewart GR (1994) Ammonium assimilation and the role of gamma-aminobutyric acid in pH homeostasis in carrot cell suspensions. Plant Physiol 106:513–520
  • Fait A, Yellin A, Fromm H (2006) GABA and GHB neurotransmitters in plants and animals. In: Baluska F, Mancuso D, Volkmann D (eds) Communication in plants. Springer, Berlin
  • Khuhawar MY, Rajper AD (2003) Liquid chromatographic determination of gamma-aminobutyric acid in cerebrospinal fluid using 2-hydroxynapthaldehyde as derivatizing reagent. J Chromatogr A 788:413–418
  • Kinnersley AM, Turano FJ (2000) Gamma aminobutyric acid (GABA) and plant responses to stress. Crit Rev Plant Sci 19(6):479–509. doi:10.1016/S0735-2689(01)80006-X
  • Mac Gregor KB, Shelp BJ, Peiris S, Bown AW (2003) Overexpression of glutamate decarboxylase in trangenic tobacco plants deters feeding by phytophagus insect larvae. J Chem Ecol 29:2177–2182. doi:10.1023/A:1025650914947
  • Mayer RR, Cherry JL, Rhodes D (1990) Effects of heat shock on amino acid metabolism of cowpea cells. Phytochemistry 94:796–810
  • Mazzucotelli E, Tartari A, Cattivelli L, Foriani G (2006) Metabolism of GABA during cold acclimation and freezing and its relationship to frost tolerance in barley and wheat. J Exp Bot 57(14):3755–3766. doi:10.1093/jxb/erl141
  • Mc Lean MD, Yevtushenko DP, Deschene A, Van Cauwenberghe OR, Makhmoudova A, Potter JW, Bown AW, Shelp BJ (2003) Overexpression of glutamate decarboxylase in trangenic tobacco plants confers resistance to the northern root knot nematode. Mol Breed 11:277–285. doi:10.1023/A:1023483106582
  • Raggi V (1994) Changes in free amino acids and osmotic adjustment in leaves of water stressed bean. Physiol Plant 91:427–434. doi: 10.1111/j.1399-3054.1994.tb02970.x
  • Rolin D, Baldet P, Just D, Chevalier C, Biran M, Raymond P (2000) NMR study of low subcellular pH during the development of cherry tomato fruit. Aust J Plant Physiol 27:61–69
  • Schwacke R, Grallath S, Breitkreuz KE, Stransky E, Stransky H, Frommer WB, Rentsch D (1999) LeProT1, a transporter for proline, glycine betaine and gamma aminobutyric acid in tomato polen. Plant Cell 11:377–392
  • Simon-Sarkadi L, Kocsy G, Varhegyi A, Galiba G, De Ronde JA (2006) Stress induced changes in the free amino acid composition in transgenic soybean plants having increase proline content. Biol Plant 50(4):793–796. doi:10.1007/s10535-006-0134-x
  • Snedden WA, Arazi T, Fromm H, Shelp BJ (1995) Calcium/ calmodulin activation of soybean glutamate decarboxylase. Plant Physiol 108:543–549
  • Thompson JF, Stewart CR, Morris CJ (1996) Changes in amino acid content of excised leaves during incubation. I. The effect of water content of leaves and atmospheric oxygen level. Plant Physiol 41:1578–1582
Uwagi
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-38c6701c-0e3e-4155-b2db-1c4f5d38d363
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.