PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 58 | 2 |
Tytuł artykułu

Thallium hyperaccumulation in Polish populations of Biscutella laevigata (Brassicaceae)

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Biscutella laevigata L. is known as a Tl hyperaccumulator. In Poland Biscutella laevigata occurs in the Tatra Mts (Western Carpathians) and on the calamine waste heap in Bolesław near Olkusz (Silesian Upland). The purpose of this work was to evaluate whether plants of both populations were able to accumulate an elevated amount of thallium in their tissues. The plants were cultivated in calamine soil in a glasshouse for a season and studied at different ages – from 2-week-old seedlings to 10-month-old adults. Additionally, the plants were grown for ten weeks in calamine soil with EDTA to enhance Tl bioavailability. The total content of Tl in plant tissues after digestion was determined by ICP-MS, whereas its distribution in leaves was studied by LA-ICP-MS. Of the total content of Tl in the soil in the range of (15.2–66.7) mg·kgˉ¹d.m., only (1.1–2.1) mg·kgˉ¹d.m. was present in a bioavailable form. The mean content in all the plants grown on the soil without EDTA was 98.5 mg·kgˉ¹d.m. The largest content was found in leaves – 164.9 mg·kgˉ¹d.m. (max. 588.2 mg·kgˉ¹d.m.). In the case of plants grown on the soil enriched with EDTA, the mean content in plants increased to 108.9 mg·kgˉ¹d.m., max. in leaves – 138.4 mg·kgˉ¹d.m. (max. 1100 mg·kgˉ¹d.m.). The translocation factor was 6.1 in the soil and 2.2 in the soil with EDTA; the bioconcentration factor amounted to 10.9 and 5.8, respectively. The plants from both populations did not contain a Tl amount clearly indicating hyperaccumulation (100–500 mg·kgˉ¹d.m.), however, high (>1) translocation and bioconcentration factors suggest such an ability. It is a characteristic species-wide trait; B. laevigata L. is a facultative Tl hyperaccumulator. The largest Tl amount was located at the leaf base, the smallest at its top. Thallium also occurred in trichomes, which was presented for the first time; in this way plants detoxify Tl in the above-ground parts. Leaves were much more hairy in the Bolesław plants. This is an adaptation for growth in the extreme conditions of the zinc-lead waste heap with elevated Tl quantity.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
58
Numer
2
Opis fizyczny
p.7-19,fig.,ref.
Twórcy
  • Department of Ecotoxicology, Institute of Botany, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
  • The Maria Grzegorzewska Academy of Special Education, Szczesliwicka 40, 02-353 Warsaw, Poland
  • Department of Ecotoxicology, Institute of Botany, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
  • Department of Environmental Protection and Modeling, Faculty of Mathematics and Natural Science, The Jan Kochanowski University in Kielce, Swietokrzyska 15, 25-406 Kielce, Poland
autor
  • Central Chemical Laboratory, The Polish Geological Institute, Rakowiecka 4, 00-975 Warsaw, Poland
  • Department of Ecotoxicology, Institute of Botany, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
autor
  • Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
Bibliografia
  • ANDERSON CWN, BROOKS RR, CHIARUCCI A, LACOSTE CJ, LEBLANC M, ROBINSON BH, SIMCOCK R, and STEWART RB. 1999. Phytominig for nickel, thallium and gold. Journal of Geochemical Exploration 67: 407–415.
  • BROADHURST CL, CHANEY RL, SCOTT ANGLE J, ERBE EF, and MAUGEL TK. 2004a. Nickel localization and response to increasing Ni soil levels in leaves of the Ni hyperaccumulator Alyssum murale. Plant and Soil 265: 225–242.
  • BROADHURST CL, CHANEY RL, SCOTT ANGLE J, MAUGEL TK, ERBE EF, and MURPHY CA. 2004b. Simultaneous hyperaccumulation of nickel, manganese, and calcium in Alyssum leaf trichomes. Environmental Science and Technology 38: 5797–5802.
  • CRÖßMANN G. 1984. Thallium – a new environmental problem? Angewdte Botanik 58(1): 3–10.
  • DMOWSKI K. 2000. Chapter 17 Environmental monitoring of heavy metals with magpie (Pica pica) feathers - an example of Polish polluted and control areas. In: Markert B, Friese K. [eds], Trace Elements: Their Distribution and Effects in the Environment, Trace Metals and the Environment 4, 455–477. Elsevier BV, Amsterdam.
  • DMOWSKI K, and BADUREK M. 2001. Thallium contamination of selected biotic elements of ecosystems neighboring the zinc smelter in Bukowno. In: Gworek B, Mocek A. [eds], Obieg pierwiastków w przyrodzie, Monografia. Vol. I. 19–23. Instytut Ochrony Środowiska, Warszawa.
  • DMOWSKI K, and BADUREK M. 2002. Thallium contamination of selected plants and fungi in the vicinity of the Bolesław zinc smelter in Bukowno (S. Poland). Preliminary study. Acta Biologica Cracoviensia Series Botanica 44: 57–61.
  • DMOWSKI K, KOZAKIEWICZ A, and KOZAKIEWICZ M. 1998. Small mammal population and community under conditions of extremely high thallium contamination in the environment. Ecotoxicology and Environmental Safety 41: 2–7.
  • DOBRZAŃSKA J. 1955. Badania fl orystyczno-ekologiczne nad roślinnością galmanową okolic Bolesławia i Olkusza [Flora and ecological studies on calamine flora in the district of Bolesław and Olkusz]. Acta Societatis Botanicorum Poloniae 24: 357–408.
  • EPSTEIN AL, GUSSMAN CD, BLAYLOCK MJ, YERMIYAHU U, HUANG JW, KAPULNIK Y, and ORSER CS. 1999. EDTA and Pb-EDTA accumulation in Brassica juncea grown in Pb-amended soil. Plant and Soil 208: 87–94.
  • ESCARRÉ J, LEFÈBVRE C, RABOYEAU S, DOSSANTOS A, GRUBER W, CLEYET MAREL JC, FRÉROT H, NORET N, MAHIEU S, COLLIN C, and VAN OORT F. 2011. Heavy metal concentration survey in soils and plants of the Les Malines Mining District (Southern France): implications for soil restoration. Water Air and Soil Pollution 216: 485–504.
  • FRATTINI P. 2005. Thallium properties and behaviour – a literature study. Geological Survey of Finland. http://arkisto.gtk.fi /s41/S41_0000_2005_2.pdf.
  • GODZIK B. 1984. Tolerancja wybranych gatunków roślin na metale ciężkie [Tolerance of selected plant species to heavy metals]. PhD dissertation, W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków.
  • GODZIK B. 1991. Accumulation of heavy metals in Biscutella laevigata (Cruciferae) as a function of their concentration in the substrate. Polish Botanical Studies 2: 241–246.
  • GODZIK B. 2015. Natural and historical values of the Olkusz Ore-bearing Region. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków.
  • GRODZIŃSKA K, KORZENIAK U, SZAREK-ŁUKASZEWSKA G, and GODZIK B. 2000. Colonization of zinc mine spoils in southern Poland – preliminary studies on vegetation, seed rain and seed bank. Fragmenta Floristica and Geobotanica 45: 123–145.
  • GRODZIŃSKA K, and SZAREK-ŁUKASZEWSKA G. 2002. Hałdy cynkowo-ołowiowe w okolicach Olkusza – przeszłość, teraźniejszość i przyszłość [Zinc-lead waste heaps in the environs of Olkusz – the past, the present and the future]. Kosmos – Problemy Nauk Biologicznych 51: 127–138.
  • HANĆ A, BARAŁKIEWICZ D, PIECHALAK A, TOMASZEWSKA B, WAGNER B, and BULSKA E. 2009. An analysis of long-distance root to leaf transport of lead in Pisum sativum plants by laser ablation-ICP-MS. International Journal of Environmental Analytical Chemistry 89(8–12): 651–659.
  • HEIL DM, SAMANI Z, HANSON AT, and RUDD B. 1999. Remediation of lead contaminated soil by EDTA. I. Batch and column studies. Water Air and Soil Pollution 113: 77–95.
  • KABATA-PENDIAS A. 2011. Trace elements in soils and plants. CRC Press, Boca Raton, US.
  • KICIŃSKA A. 2009. Arsen i tal w glebach i roślinach rejonu Bukowna [Arsenic and thallium in the soil and plants in the area of Bukowno]. Ochrona Środowiska i Zasobów Naturalnych 40: 199–208.
  • KÜPPER H, LOMBI E, ZHAO FJ, and MCGRATH SP. 2000. Cellular compartmentation of cadmium and zinc in relation to other metals in the hyperaccumulator Arabidopsis halleri. Planta 212: 75–84.
  • LACOSTE C, ROBINSON B, and BROOKS R. 2001. Uptake of thallium by vegetables: its significance for human health, phytoremediation, and phytomining. Journal of Plant Nutrition 24(8): 1205–1215.
  • LACOSTE C, ROBINSON B, BROOKS R, ANDERSON C, CHIARUCCI A, and LEBLANC M. 1999. The phytoremediation potential of thallium-contaminated soils using Iberis and Biscutella species. International Journal of Phytoremediation 1(4): 327–338.
  • LEBLANC M, PETIT D, DERAM A, ROBINSON BH, and BROOKS R. 1999. The phytomining and environmental significance of hyperaccumulation of thallium by Iberis intermedia from Southern France. Economic Geology 94: 109–114.
  • LIPHADZI MS, KIRKHAM MB, MANKIN KR, and PAULSEN GM. 2003. EDTA-assisted heavy-metal uptake by poplar and sunflower grown at a long-term sewage-sludge farm. Plant and Soil 257: 171–182.
  • LIS J, PASIECZNA A, KARBOWSKA B, ZEMBRZUSKI W, and ŁUKASZEWSKI Z. 2003. Thallium in soils and stream sediments of a Zn-Pb mining and smelting area. Environmental Science and Technology 37: 4569–4572.
  • MINCZEWSKI, J, MARCZENKO Z. 2004. Chemia analityczna. Chemiczne metody analizy ilościowej [Analytical chemistry. Chemical methods of quantitative analysis]. Vol. II, PWN, Warszawa.
  • NRIAGU J.O. 1998. Thallium in the environment. Advances in Environmental Science and Technology 29, Wiley and Sons, New York.
  • OLKO A, ABRATOWSKA A, ŻYŁKOWSKA J, WIERZBICKA M, and TUKIENDORF A. 2008. Armeria maritima from a calamine heap – Initial studies on physiologic-metabolic adaptations to metal-enriched soil. Ecotoxicology and Environmental Safety 69: 209–218.
  • POLLARD AJ, REEVES RD, and BAKER AJM. 2014. Facultative hyperaccumulation of heavy metals and metalloids. Plant Science 217–218: 8–17.
  • POŠĆIĆ F, MARCHIOL L, and SCHAT H. 2013. Hyperaccumulation of thallium is population-specific and uncorrelated with caesium accumulation in the thallium hyperaccumulator, Biscutella laevigata. Plant and Soil 365: 81–91.
  • POŠĆIĆ F, FELLET G, VISCHI M, CASOLO V, SCHAT H, and MARCHIOL L. 2015. Variation in heavy metal accumulation and genetic diversity at a regional scale among metallicolous and non-metallicolous populations of the facultative metallophyte Biscutella laevigata subsp. laevigata. International Journal of Phytoremediation 17(5): 464–475.
  • SAGER M. 1994. Thallium. Toxicological and Environmental Chemistry 45(1–2): 11–32.
  • SCHECKEL KG, LOMBI E, ROCK SA, and MCLAUGHLIN MJ. 2004. In vivo synchrotron study of thallium speciation and compartmentation in Iberis intermedia. Environmental Science and Technology 38: 5095–5100.
  • SCHECKEL KG, HAMON R, JASSOGNE L, RIVERS M, and LOMBI E. 2007. Synchroton X-ray absorption-edge computed microtomography imaging of thallium compartmentalization in Iberis intermedia. Plant and Soil 290: 51–60.
  • SEREGIN IV, and IVANOV VB. 1997. Histochemical investigation of cadmium and lead distribution in plants. Russian Journal of Plant Physiology 44: 791–796.
  • SHEORAN V, SHEORAN AS, and POONIA P. 2009. Phytomining: A review. Minerals Engineering 22: 1007–019.
  • SZAFER W. 1927. Flora Polska: Rośliny naczyniowe Polski i ziem ościennych [The Polish flora: Vascular plants of Poland and neighbouring areas]. Vol. III, Polska Akademia Umiejętności (PAU), Kraków.
  • SZAREK-ŁUKASZEWSKA G, and NIKLIŃSKA M. 2002. Concentration of alkaline and heavy metals in Biscutella laevigata L. and Plantago lanceolata L. growing on calamine spoils (S. Poland). Acta Biologica Cracoviensia Series Botanica 44: 29–38.
  • SZMAL ZS, and LIPIEC T. 1996. Chemia analityczna z elementami analizy instrumentalnej [Analytical chemistry with the elements of instrumental analysis]. Wydawnictwo Lekarskie PZWL, Warszawa.
  • TURGUT C, PEPE MK, and CUTRIGHT TJ. 2004. The effect of EDTA and citric acid on phytoremediation of Cd, Cr and Ni from soil using Helianthus annuus. Environmental Pollution 131: 147–154.
  • XIAO T, GUHA J, BOYLE D, LIU C-Q, and CHEN J. 2004. Environmental concerns related to high thallium levels in soils and thallium uptake by plants in southwest Guizhou, China. Science of the Total Environment 318: 223–244.
  • WĄCHALEWSKI T. 1999. Kwasowość czynna i potencjalna gleby [Active and potential acidity of soil]. In: Szczepaniec–Cięciak E, Kościelniak P. [eds], Chemia środowiska: ćwiczenia i seminaria, Vol. II. 21–24. Uniwersytet Jagielloński, Kraków.
  • WENZEL WW, and JOCKWER F. 1999. Accumulation of heavy metals in plants grown on mineralized soils of the Austrian Alps. Environmental Pollution 104: 145–155.
  • WIERZBICKA M, and PIELICHOWSKA M. 2004. Adaptation of Biscutella laevigata L., a metal hyperaccumulator, to growth on a zinc-lead waste heap in southern Poland. I: Differences between waste-heap and mountain populations. Chemosphere 54: 1663–1674.
  • WIERZBICKA M, SZAREK-ŁUKASZEWSKA G, and GRODZIŃSKA K. 2004. Highly toxic thallium in plants from the vicinity of Olkusz (Poland). Ecotoxicology and Environmental Safety 59(1): 84–88.
  • WIERZBICKA M, DUTKIEWICZ J, WYSOCKA I, BULSKA E, and JANSSENS K. 2007. Biotransformacja selenu w roślinach [Biotransformation of selenium in plants]. In: Wierzbicka M, Bulska E, Pyrzyńska K, Wysocka I, Zachara BA [eds], Selen pierwiastek ważny dla zdrowia, fascynujący dla badacza, 88-102. Wyd. Malamut. Warszawa.
  • WÓYCICKI Z. 1913. Obrazy roślinności Królestwa Polskiego [Vegetation in the Kingdom of Poland]. IV Roślinność terenów galmanowych Bolesławia i Olkusza [The calamine flora of Boleslaw and Olkusz], Kasa Mianowskiego, Warszawa.
  • WYSOCKA I. 2004. Badanie specjacji i metabolizmu selenu w roślinach metodą chromatografi i cieczowej połączonej ze spektrometrią mas ze wzbudzeniem w plazmie indukcyjnie sprzężonej [The study on speciation and metabolism of selenium in plants with use of the liquid chromatography method coupled with ICP-MS]. PhD dissertation, Wydział Chemii, Uniwersytet Warszawski.
  • VAN DER ENT A, BAKER AJM, REEVES RD, POLLARD AJ, and SCHAT H. 2013. Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant and Soil 362: 319–334.
  • VANĔK A, KOMÁREK M, CHRASTNỲ V, BEČKA D, MIHALJEVIČ M, ŠEBEK O, PANŬSKOVÁ G, and SCHUSTEROVÁ Z. 2010. Thallium uptake by white mustard (Sinapis alba L.) grown on moderately contaminated soils-Agro-environmental implications. Journal of Hazardous Materials 182: 303–308.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-38ae61c6-7a54-4435-b364-090736edced8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.