Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 06 | 2 |
Tytuł artykułu

Phylogeny of African Myotis bats (Chiroptera, Vespertilionidae) inferred from cytochrome b sequences

Treść / Zawartość
Warianty tytułu
Języki publikacji
The genus Myotis is comprised of about 100 species that are unequally distributed between the Northern (81% of the species) and the Southern hemisphere (19% of the species). Only eight species of Myotis occur in the Ethiopian region, but this is the only biogeographic region with representatives of all four classical subgenera, suggesting a diverse assemblage of morphotypes. We used sequences of a mitochondrial DNA gene (cyt b) to investigate the evolution and the phylogenetic position of seven of the eight Ethiopian species, and compared them to a broad sampling of Myotis from the World and of other vespertilionids. Phylogenetic reconstruction was based on 91 complete sequences representing 79 species of bats. The two endemic southern African species of the subgenus Cistugo were not placed within the genus Myotis, but were basal to the vespertilionid radiation, as suggested by earlier work based on karyology. The remaining Ethiopian species formed a strong monophyletic clade within Myotis, further stressing the importance of biogeography as a good predictor of phylogenetic relationships. This Ethiopian clade includes one Western Palaearctic and one Oriental species, both of which probably secondarily colonized these areas from the Ethiopian region. Molecular dating based on Bayesian inferences suggest that these faunal exchanges occurred at the end of the Miocene, while the split of the Ethiopian clade from the other Old World Myotis dates back to the middle Miocene, quite early in the Myotis radiation. Thus, the relative paucity of species in sub-Saharan Africa cannot be attributed to a late entry into this continent. Instead, these molecular results suggest that other evolutionary processes are responsible for the poor species diversity of Myotis found in Africa today.
Słowa kluczowe
Opis fizyczny
  • Natural History Museum, P.O. Box 6434, 1211 Geneva 6, Switzerland
  • Agirre-Mendi, R T., J. L. García-Mudarra, J. Juste, and C. Ibáñez. 2004. Presence of Myotis alcathoe Helversen & Heller, 2001 (Chiroptera: Vespertilionidae) in the Iberian Peninsula. Acta Chiropterologica, 6: 49-57.
  • Appleton, B. R., J. A. McKenzie, and L. Christidis. 2004. Molecular systematics and biogeography of the bent-wing bat complex Miniopterus schreibersii (Kuhl, 1817) (Chiroptera: Vespertilionidae). Molecular Phylogenetics and Evolution, 31: 431-439.
  • Benda, P., M. Ruedi, and M. Uhrin. 2003. First record of Myotis alcathoe (Chiroptera: Vespertilionidae) in Slovakia. Folia Zoológica, 52: 359-365.
  • Bickham, J. W., K. McBee, and D. A. Schlitter. 1986. Chromosomal variation among seven species of Myotis (Chiroptera: Vespertilionidea). Journal of Mammalogy, 67: 746-750.
  • Bickham, J. W., J. C. Patton, D. A. Schlitter, I. L. Rautenbach, and R. L. Honeycutt. 2004. Molecular phylogenetics, karyotypic diversity, and partition of the genus Myotis (Chiroptera: Vespertilionidae). Molecular Phylogenetics and Evolution, 33: 333-338.
  • Chomczynski, P., and N. Sacchi. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry, 162: 156-159.
  • Douady, C. J., and E. J. P. Douzery. 2003. Molecular estimation of eulipotyphlan divergence times and the evolution of ‘Insectivora’. Molecular Phylogenetics and Evolution, 28: 285-296.
  • Fahr, J. and N. M. Ebigbo. 2003. A conservation assessment of the bats of the Simandou Range, Guinea, with the first record of Myotis welwitschii (Gray, 1866) from West Africa. Acta Chiropterologica, 5: 125-141.
  • Farris, J. S. 1989. The retention index and the rescaled consistency index. Cladistics, 5: 417-419.
  • Felsenstein, J. 1984. Distance methods for inferring phylogenies — a justification. Evolution, 38: 16-24.
  • Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39: 783-791.
  • Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package), Version 3.6. University of Washington, Seattle, WA.
  • Fenton, M. B., and W. Bogdanowicz. 2002. Relationships between external morphology and foraging behaviour: bats in the genus Myotis. Canadian Journal of Zoology, 80: 1004-1013.
  • Flower, B. M., and J. P. Kennett. 1994. The middle Miocene climatic transition: East Antartic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeography, Palaeoclimatology, Palaeoecology, 108: 537-555.
  • Findley, J. S. 1972. Phenetic relationships among bats of the genus Myotis. Systematic Zoology, 21: 31-52.
  • Gascuel, O. 1997. BIONJ: An improved version of the NJ algorithm based on a simple model of sequence data. Molecular Biology and Evolution, 14: 685-695.
  • Godawa Stormark, J. 1998. Phenetic analysis of Old World Myotis (Chiroptera: Vespertilionidae) based on dental characters. Acta Theriologica, 43: 1-11.
  • Guindon, S., and O. Gascuel. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum Likelihood. Systematic Biology, 52: 696-704.
  • Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41: 95-98.
  • Hill, J. E., and P. Morris. 1971. Bats from Ethiopia collected by the Great Abbai Expedition 1968. Bulletin of the British Museum, Natural History (Zoology), 21: 27-49.
  • Hill, J. E., D. L. Harrison, and T. S. Jones. 1988. New records of bats (Microchiroptera) from Nigeria. Mammalia, 52: 590-592.
  • Hillis, D. M., and J. J. Bull. 1993. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology, 42: 182-192.
  • Hoofer, S. R., and R. A. Van Den Bussche. 2003. Molecular phylogenetics of the Chiropteran family Vespertilionidae. Acta Chiropterologica, 5 (supplement): 1-63.
  • Horáček, I. 2001. On the early history of vespertilionid bats in Europe: the Lower Miocene record from the Bohemian Massif. Lynx (N.S.), 32: 123-154.
  • Horáček, I., and V. Hanák. 1984. Comments on the systematics and phylogeny of Myotis nattereri (Kuhl, 1818). Myotis, 21-22: 20-29.
  • Horáček I., V. Hanák, and J. Gaisler. 2000. Bats of the Palaearctic region: a taxonomic and biogeographical review. Pp. 11-157, in Proceedings of the VIIIth EBRS (B. W. Wołoszyn, ed.). Institute of Systematics and Evolution of Animals PAS, Kraków, 273 pp.
  • Huelsenbeck, J. P., and F. Ronquist. 2001. MR-BAYES: Bayesian inference of phylogeny. Bioiformatics, 17: 754-755.
  • Irwin, D. M., T. D. Kocher, and A. C. Wilson. 1991. Evolution of the cytochrome b gene of mammals. Journal of Molecular Evolution, 32: 128-144.
  • Jones, K. E., A. Purvis, A. MacLarnon, O. R. P. Bininda-Emonds, and N. B. Simmons. 2002. A phylogenetic supertree of the bats (Mammalia: Chiroptera). Biological Reviews, 77: 223-259.
  • Kawai, K., M. Nikaido, M. Harada, S. Matsumura, L.-K. Lin, Y. Wu, M. Hasegawa, and N. Okada. 2002. Intra- and interfamily relationships of Vespertilionidae inferred by various molecular markers including SINE insertion data. Journal of Molecular Evolution, 55: 284-301.
  • Kawai, K., M. Nikaido, M. Harada, S. Matsumura, L.-K. Lin, Y. Wu, M. Hasegawa, and N. Okada. 2003. The status of the Japanese and East Asian bats of the genus Myotis (Vespertilionidae) based on mitochondrial sequences. Molecular Phylogenetics and Evolution, 28: 297-307.
  • Kishino, H., J. L. Thorne, and W. J. Bruno. 2001. Performance of a divergence time estimation method under a probabilistic model of rate evolution. Molecular Biology and Evolution, 18: 352-361.
  • Kock, D. 2001. Identity of the African Vespertilio hesperida Temminck 1840 (Mammalia, Chiroptera, Vespertilionidae). Senckenbergiana biologica, 81: 277-283.
  • Koopman, K. F. 1994. Chiroptera: Systematics. Pp. 100-109, in Handbuch der Zoologie, Vol. VII (J. Niethammer, H. Schliemann, and D. Starck, eds.). Walter de Gruyter, Berlin, vii + 217 pp.
  • Lanave, C., G. Preparata, C. Saccone, and G. Serio. 1984. A new method for calculating evolutionary substitution rates. Journal of Molecular Evolution, 20: 86-93.
  • Mayer, F., and O. von Helversen. 2001a. Cryptic diversity in European bats. Proceedings of the Royal Society of London, Series B, 268: 1825-1832.
  • Mayer, F., and O. von Helversen. 2001b. Sympatric distribution of two cryptic bat species across Europe. Biological Journal of the Linnean Society, 74: 365-374.
  • Rautenbach, I. L., G. N. Bronner, and D. A. Schlitter. 1993. Karyotypic data and attendant systematic implications for the bats of southern Africa. Koedoe, 36: 87-104.
  • Roberts, A. 1919. Descriptions of some new mammals. Annals of the Transvaal Museum, 6: 112-113.
  • Rodriguez, R., J. L. Olivier, A. Marin, and J. R. Medina. 1990. The general stochastic model of nucleotide substitution. Journal of Theoretical Biology, 142: 485-501.
  • Ruedi, M., and F. Mayer. 2001. Molecular systematics of bats of the genus Myotis (Vespertilionidae) suggests deterministic ecomorphological convergences. Molecular Phylogenetics and Evolution, 21:436-448.
  • Ruedi, M., P. Jourde, P. Giosa, M. Barataud, and S.Y. Roué. 2002. DNA reveals the existence of Myotis alcathoe in France (Chiroptera: Vespertilionidae). Revue Suisse de Zoologie, 109: 643-652.
  • Saitou, N., and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4: 406-125.
  • Sakai, T., Y. Kikkawa, K. Tsuchiya, M. Harada, M. Kanoe, M. Yoshiyuki, and H. Yonekawa. 2003. Molecular phylogeny of Japanese Rhinolophidae based on variations in the complete sequence of the mitochondrial cytochrome b gene. Genes and Genetic Systems, 78: 179-189.
  • Schunger, I., C. Dietz, D. Merdschanova, S. Merdschanov, K. Christov, I. Borissov, S. Staneva, and B. P. Petrov. In press. Swarming of bats at Cave Vodnite Dupki (Central Balkan National Park, Bulgaria). Acta Zoologica Bulgarica.
  • Simmons, N. B. In press. Order Chiroptera. In Mammal species of the World: A taxonomic and geographic reference, third edition (D. E. Wilson and D. M. Reeder, eds.). Smithsonian Institution Press, Washington, D.C.
  • Smith, M. F., and J. L. Patton. 1991. Variation in mitochondrial cytochrome b sequence in natural populations of South American akodontine rodents (Muridae: Sigmodontinae). Molecular Biology and Evolution, 8: 85-103.
  • Stadelmann, B., L. G. Herrera, J. Arroyo-Cabrales, J. J. Flores-Martínez, B. P. May, and M. Ruedi. 2004. Molecular systematics of the fishing bat Myotis (Pizonyx) vivesi. Journal of Mammalogy, 85: 133-139.
  • Swofford, D. L., G. J. Olsen, P. J. Waddell, and D. M. Hillis. 1996. Phylogenetic inference, Pp. 407-514, in Molecular systematics, second edition (D. M. Hillis, C. Moritz, and B. K. Mable, eds.). Sinauer Associates Inc., Publishers, Sunderland, Massachusets, 655 pp.
  • Swofford, D. L. 2002. PAUP*. Phylogenetic analyses using parsimony (*and other methods), Version 4.0bl0a for PC. Sinauer Associates Inc., Publishers, Sunderland, Massachusetts.
  • Tate, G. H. 1941. A review of the genus Myotis (Chiroptera) of Eurasia, with special reference to species occurring in the East Indies. Bulletin of the American Museum of Natural History, 78: 537-565.
  • Taylor, P. J. 2000. Bats of Southern Africa. University of Natal Press, Pietermaritzburg, viii + 206 pp.
  • Teeling, E. C., O. Madsen, R. A. Van Den Bussche, W. W. de Jong, M. J. Stanhope, and M. S. Springer. 2002. Microbat paraphyly and the convergent evolution of a key innovation in Old World rhinolophoid microbats. Proceedings of the National Academy of Sciences of the United States of America, 99: 1431-1436.
  • Thomas, O. 1912. A new vespertilionine bat from Angola. Annals and Magazine of Natural History (Series 8), 10: 204-206
  • Thorne, J. L., and H. Kishino. 2002. Divergence time and evolutionary rate estimation with multilocus data. Systematic Biology, 51: 689-702.
  • Thorne, J. L., H. Kishino, and I. S. Painter. 1998. Estimating the rate of evolution of the rate of molecular evolution. Molecular Biology and Evolution, 15: 1647-1657.
  • Topál, G. 1983. New and rare fossil mouse-eared bats from the Middle Pliocene of Hungary (Mammalia, Chiroptera). Fragmenta Mineralogica et Palaeontologica, 11: 43-54.
  • Volleth, M., 1992. Comparative analysis of the banded karyotypes of the European Nyctalus species (Vespertilionidae; Chiroptera). Pp. 221-226, in Prague studies in mammalogy (I. Horáček and V. Vohralík, eds.). Charles University Press, Praha, 246 pp.
  • Volleth, M., and K.-G. Heller. 1994. Phylogenetic relationships of vespertilionid genera (Mammalia: Chiroptera) as revealed by karyological analysis. Zeitschrift für zoologische Systematik und Evolutionsforschung, 32: 11-34.
  • Volleth, M., G. Bronner, M. C. Göpfert, K.-G. Heller, O. von Helversen, and H.-S. Yong. 2001. Karyotype comparison and phylogenetic relationships of Pipistrellus-like bats (Vespertilionidae; Chiroptera; Mammalia). Chromosome Research, 9: 25-46.
  • Von Helversen, O., K.-G. Heller, F. Mayer, A. Nemeth, M. Volleth, and P. Gombkötö. 2001. Cryptic mammalian species: a new species of whiskered bat (Myotis alcatoe n. sp.) in Europe. Naturwissenschaften, 88: 217-223.
  • Wang, H. Y., Q. Meiqing, and A. J. Cutler. 1993. A simple method of preparing plant samples for PCR. Nucleic Acids Research, 21: 4153-4154.
  • Yang, H., E. M. Golenberg, and J. Shoshani. 1997. A blind testing design for authenticating ancient DNA sequences. Molecular Phylogenetics and Evolution, 7: 261-265.
  • Zachos, J., M. Pagani, L. Sloan, E. Thomas, and K. Billups. 2001. Trends, rhythms, and aberrations in global climate 65 Mya to present. Science, 292: 686-693.
  • Zima, J., and I. Horáček. 1985. Synopsis of karyotypes of vespertilionid bats (Mammalia: Chiroptera). Acta Universitatis Carolinae (Biologica), 1981: 311-329.
  • Zwickl, D. J., and D. M. Hillis. 2002. Increased taxon sampling greatly reduces phylogenetic error. Systematic Biology, 51: 588-598.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.