PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2019 | 72 | 2 |

Tytuł artykułu

Agronomic biofortification as a means of enriching plant foodstuffs with iodine

Treść / Zawartość

Warianty tytułu

PL
Biofortyfikacja agronomiczna sposobem na wzbogacenie żywności pochodzenia roślinnego jodem

Języki publikacji

EN

Abstrakty

EN
Iodine is indispensable in the diet of humans and other mammals and iodine deficiencies cause serious illnesses. The content of iodine in food (with the exception of marine foodstuffs) does not meet the nutritional needs of humans, and for this reason prophylactic iodination of salt is currently carried out in many countries. Biofortification of plants with iodine can become a widespread, alternative means of supplying iodine-rich foods. In the present study, we discuss the main issues related to the cultivation of plants enriched with iodine. We describe the effect of various forms of iodine fertilizer on crops, such as natural iodine sources, organic iodine, iodate and iodide salts, as well as ways of biofortifying crops: fertigation, foliar and soil application, and by hydroponics. Effective biofortification of plants with iodine increases its concentration to levels corresponding to human nutritional requirements whilst preserving the desirable eating qualities of the plants. Because each species reacts in a specific manner to a particular chemical form of iodine application, fertilization and cultivation methods, and other conditions, the development of proper cultivation technologies is essential to bring about widespread biofortification with iodine.
PL
Jod jest niezbędnym składnikiem diety człowieka i innych ssaków, a jego niedobory są przyczyną wielu poważnych schorzeń. Zawartość jodu w żywności (za wyjątkiem żywności pochodzenia morskiego) nie zaspokaja potrzeb żywieniowych człowieka, dlatego w wielu krajach profilaktycznie prowadzi się jodowanie soli kuchennej. Biofortyfikacja roślin w jod może stać się powszechnym, alternatywnym sposobem dostarczenia bogatej w ten składnik żywności. W prezentowanej pracy na podstawie literatury przedmiotu przedstawiono główne problemy związane z uprawą roślin wzbogaconych w jod. Omówiono wpływ nawożenia roślin różnymi formami jodu (jod organiczny, sole jodu – jodan i jodek) stosowanych dolistnie i dokorzeniowo w uprawach polowych i hydroponicznych. Zwrócono uwagę na skuteczność biofortyfikacji roślin w jod, która nie tylko powinna zwiększyć stężenie tego pierwiastka do wartości odpowiadających potrzebom żywieniowym człowieka, ale powinna również zapewnić wysoką jakość konsumpcyjną roślin. Ponieważ każdy gatunek reaguje specyficznie na formę chemiczną jodu i sposoby jego aplikacji, kluczowe dla upowszechnienia biofortyfikacji roślin w jod jest opracowanie szczegółowych technologii uprawy w warunkach biofortyfikacji jodem.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

72

Numer

2

Opis fizyczny

Article: 1766 [9 p.], ref.

Twórcy

autor
  • Department of Biotechnology, Human Nutrition and Science of Food Commodities, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
autor
  • Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
  • Department of Plant Protection, Faculty of Horticulture and Landscape Architecture, University of Life Sciences in Lublin, Leszczynskiego 7, 20-069 Lublin, Poland
autor
  • Department of Plant Physiology, Faculty of Horticulture and Landscape Architecture, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland

Bibliografia

  • Velasco I, Bath SC, Rayman MP. Iodine as essential nutrient during the first 1,000 days of life. Nutrients. 2018;10(3):290. https://doi.org/10.3390/nu10030290
  • Koukkou EG, Roupas ND, Markou KB. Effect of excess iodine intake on thyroid on human health. Minerva Med. 2017;108(2):136–146. https://doi.org/10.23736/S0026-4806.17.04923-0
  • Hays SM, Poddalgoda D, Macey K, Aylward L, Nong A. Biomonitoring equivalents for interpretation of urinary iodine. Regul Toxicol Pharmacol. 2018;94:40–46. https://doi.org/10.1016/j.yrtph.2018.01.017
  • Doggui R, Atia J. Iodine deficiency: physiological, clinical and epidemiological features, and pre-analytical considerations. Ann Endocrinol. 2015;76:59–66. https://doi.org/10.1016/j.ando.2014.12.002
  • Błażewicz A, Makarewicz A, Korona-Glowniak I, Dollivera W, Kocjan W. Iodine in autism spectrum disorders. J Trace Elem Med Biol. 2016;34:32–37. https://doi.org/10.1016/j.jtemb.2015.12.002
  • Allen L, de Benoist D, Dary O, Hurrell R. Guidelines on food fortification with micronutrients [Internet]. Geneva: World Health Organization; 2006 [cited 2019 Apr 15]. Available from: http://www.who.int/iris/handle/10665/43412
  • Zygmunt A, Adamczewski Z, Zygmunt A, Adamczewska K, Trofimiuk-Muldner M, Hubalewska-Dydejczyk A, et al. An assessment of the effectiveness of iodine prophylaxis in pregnant women – analysis in one of reference gynaecological-obstetric centres in Poland. Endokrynol Pol. 2015;66(5):404–411. https://doi.org/10.5603/EP.2015.0050
  • Zimmermann M, Andersson M. Assessment of iodine nutrition in populations: past, present, and future. Nutrit Rev. 2012;70(10):553–570. https://doi.org/10.1111/j.1753-4887.2012.00528
  • Kurosad A, Nicpoń J, Kubiak K, Jankowski M, Kungl K. Iodine occurrence circulation deficiency region and the main iodine sources in human and animal nutrition. Adv Clin Exp Med. 2005;14(5):1019–1025.
  • van der Reijden OL, Zimmermann MB, Galetti V. Iodine in dairy milk: sources, concentrations and importance to human health. Best Pract Res Clin Endocrinol Metab. 2017;31(4):385–395. https://doi.org/10.1016/j.beem.2017.10.004
  • Ershow AG, Skeaff SA, Merkel JM, Pehrsson PR. Development of databases on iodine in foods and dietary supplements. Nutrients. 2018;10(1):100. https://doi.org/10.3390/nu10010100
  • Kunachowicz H, Nadolna I, Przygoda B, Iwanowicz K. Tabele składu i wartości odżywczej żywności. Warszawa: Wydawnictwo Lekarskie PZWL; 2005.
  • Weng HX, Liu HP, Li DW, Ye M, Pan L, Xia TH. An innovative approach for iodine supplementation using iodine-rich phytogenic food. Environ Geochem Health. 2014;36(4):815–828. https://doi.org/10.1007/s10653-014-9597-4
  • Signore A, Renna M, D’Imperio M, Serio F, Santamaria P. Preliminary evidences of biofortification with iodine of “Carota di Polignano”, an Italian carrot landrace. Front Plant Sci. 2018;9:170. https://doi.org/10.3389/fpls.2018.00170
  • Miller DD, Welch RM. Food system strategies for preventing micronutrient malnutrition. Food Policy. 2013;42:115–128. https://doi.org/10.1016/j.foodpol.2013.06.008
  • Gonzali S, Kiferle C, Perata P. Iodine biofortification of crops: agronomic biofortification, metabolic engineering and iodine bioavailability. Curr Opin Biotechnol. 2017;44:16–26. https://doi.org/10.1016/j.copbio.2016.10.004
  • Winger RJ, König J, House DA. Technological issues associated with iodine fortification of foods. Trends Food Sci Technol. 2008;19:94–101. https://doi.org/10.1016/j.tifs.2007.08.002
  • Hefferon, KL. Nutritionally enhanced food crops; progress and perspectives. Int J Mol Sci. 2015;16:3895–3914. https://doi.org/10.3390/ijms16023895
  • Mišurcová L, Machů L, Orsavová J. Seaweed minerals as nutraceuticals. Adv Food Nutr Res. 2011;64:371–390. https://doi.org/10.1016/B978-0-12-387669-0.00029-6
  • Teas J, Pino S, Critchley A, Braverman LE. Variability of iodine content in common commercially available edible seaweeds. Thyroid. 2004;14(10):836–841. https://doi.org/10.1089/thy.2004.14.836
  • Weng H, Hong C, Xia T, Bao L, Liu H, Li D. Iodine biofortification of vegetable plants – an innovative method for iodine supplementation. Chin Sci Bull. 2013;58:2066–2072. https://doi.org/10.1007/s11434-013-5709-2
  • Weng HX, Yan AL, Hong CL, Xie LL, Qin YC, Cheng CQ. Uptake of different species of iodine by water spinach and its effect to growth. Biol Trace Elem Res. 2008;124:184–194. https://doi.org/10.1007/s12011-008-8137-4
  • Medrano-Macías J, Leija-Martínez P, González-Morales S, Juárez-Maldonado A, Benavides-Mendoza A. Use of iodine to biofortify and promote growth and stress tolerance in crops front. Plant Sci. 2016;7:1146. https://doi.org/10.3389/fpls.2016.01146
  • Kato S, Wachi T, Yoshihira K, Nakagawa T, Ishikawa A, Takagi D, et al. Rice (Oryza sativa L.) roots have iodate reduction activity in response to iodine. Front Plant Sci. 2013;4:227. https://doi.org/10.3389/fpls.2013.00227
  • Lawson PG, Daum D, Czauderna R, Vorsatz C. Factors influencing the efficacy of iodine foliar sprays used for biofortifying butterhead lettuce. J Plant Nutr Soil Sci. 2016;179:661–669. https://doi.org/10.1002/jpln.2016900213
  • Cakmak I, Prom-u-thai C, Guilherme LRG, Rashid A, Hora KH, Yazici A, et al. Iodine biofortification of wheat, rice and maize through fertilizer strategy. Plant Soil. 2017;418:319–335. https://doi.org/10.1007/s11104-017-3295-9
  • Kiferle C, Gonzali S, Holwerda HT, Ibaceta RR, Perata P. Tomato fruits: a good target for iodine biofortification. Front Plant Sci. 2013;4:205. https://doi.org/10.3389/fpls.2013.00205
  • Schmidberger JW, James AB, Edwards R, Naismith JH, O’Hagan D. Halomethane biosynthesis: structure of a SAM‐dependent halide methyltransferase from Arabidopsis thaliana. Angew Chem Int Ed Engl. 2010;49(21):3646–3648. https://doi.org/10.1002/anie.201000119
  • Ujowundu CO, Ukoha AI, Agha CN, Nwachukwu N, Igwe KO, Kalu FN. Effects of potassium iodate application on the biomass and iodine concentration of selected indigenous Nigerian vegetables. Afr J Biotechnol. 2010;9(42):7141–7147. https://doi.org/10.4314/ajb.v9i42
  • Smoleń S, Ledwożyw-Smoleń I, Sady W. The role of exogenous humic and fulvic acids in iodine biofortification in spinach (Spinacia oleracea L.). Plant Soil. 2016;402(1–2):129–143. https://doi.org/10.1007/s11104-015-2785-x
  • Ren Q, Fan F, Zhang Z, Zheng X, DeLong GR. An environmental approach to correcting iodine deficiency: supplementing iodine in soil by iodination of irrigation water in remote areas. J Trace Elem Med Biol. 2008;22:1–8. https://doi.org/10.1016/j.jtemb.2007.09.003
  • Landini M, Gonzali S, Perata P. Iodine biofortification in tomato. J Soil Sci. 2011;174:480–486. https://doi.org/10.1002/jpln.201000395
  • Strzetelski P, Smoleń S, Rożek S, Sady W. Effect of differentiated fertilization and foliar application of iodine on yielding and antioxidant properties in radish (Raphanus sativus L.) plants. Ecological Chemistry and Engineering A. 2010;17:1189–1196.
  • Watts MJ, O’Reilly J, Maricelli A, Coleman A, Ander EL, Ward NI. A snapshot of environmental iodine and selenium in La Pampa and San Juan provinces of Argentina. J Geochem Explor. 2010;107(2):87–93. https://doi.org/10.1016/j.gexplo.2009.11.002
  • Caffagni A, Pecchioni N, Meriggi P, Bucci V, Sabatini E, Acciarri N, et al. Iodine uptake and distribution in horticultural and fruit tree species. Italian Journal of Agronomy. 2012;7(3):e32. https://doi.org/10.4081/ija.2012.e32
  • Hong CL, Weng HX, Qin YC, Yan AL, Xie LL. Transfer of iodine from soil to vegetables by applying exogenous iodine. Agron Sustain Dev. 2008;28:575–583. https://doi.org/10.1051/agro:2008033
  • Gupta N, Bajpai M, Majumdar R, Mishra P. Response of iodine on antioxidant levels of Glycine max L. grown under Cd2+ stress. Adv Biol Res. 2015;9(1):40–48.
  • Mao H. Wan J, Wang Z, Zan Y, Lyons G, Zou C. Using agronomic biofortification to boost zinc, selenium, and iodine concentrations of food crops grown on the loess plateau in China. Journal of Soil Science and Plant Nutrition. 2014;14:459–470. https://doi.org/10.4067/s0718-95162014005000036
  • Blasco B, Rios JJ, Cervilla LM, Sánchez-Rodrigez E, Ruiz JM, Romero L. Iodine biofortification and antioxidant capacity of lettuce: potential benefits for cultivation and human health. Ann Appl Biol. 2008;152:289–299. https://doi.org/10.1111/j.1744-7348.2008.00217.x
  • Dai JL, Zhu YG, Zhang M, Huang YZ. Selecting iodine – enriched vegetables and the residual effect of iodate application to soil. Biol Trace Elem Res. 2004;3:265–276. https://doi.org/10.1385/BTER:101:3:265
  • Li R, Liu H, Hong CL, Dai ZX, Liu JW, Zhou J, et al. Iodide and iodate effects on the growth and fruit quality of strawberry. J Sci Food Agric. 2016;97:230–235. https://doi.org/10.1002/jsfa.7719
  • Smoleń S, Sady W, Ledwożyw-Smoleń I, Strzetelski P, Liszka-Skoczylas M, Rożek S. Quality of fresh and stored carrots depending on iodine and nitrogen fertilization. Food Chem. 2014;159:316–322. https://doi.org/10.1016/j.foodchem.2014.03.024
  • García-Osuna HT, Benavides-Mendoza A, Rivas-Morales C, Morales-Rubio E, Verde-Star J, Miranda-Ruvalcaba R. Iodine application increased ascorbic acid content and modified the vascular tissue in Opuntia ficus-indica. Pak J Bot. 2014;46:127–134.
  • Blasco B, Ríos JJ, Leyva R, Cervilla LM, Sánchez-Rodríguez E, Rubio-Wilhelmi MM, et al. Does iodine biofortification affect oxidative metabolism in lettuce plants? Biol Trace Elem Res. 2011;142:831–842. https://doi.org/10.1007/s12011-010-8816-9

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-38750e99-cef9-4de9-a78c-677deb789b34
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.