Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 79 | 1 |
Tytuł artykułu

Antidepressant and anxiolytic efficacy of single, chronic and concomitant use of vortioxetine, dapoxetine and fluoxetine in prenatally stressed rats

Treść / Zawartość
Warianty tytułu
Języki publikacji
Depression is a highly prevalent social disease. Despite significant medical progress, therapeutic solutions for optimising treatment of this disease are still being sought. The aim of this study was to assess, using the forced swimming test, locomotor activity test and two compartment exploratory test, for a reduction in immobility time (a measure of antidepressant efficacy), locomotor activity and anxiolytic effectiveness after single, repeated, and combined administration of vortioxetine (2.5 mg/kg – a multimodal SMS), dapoxetine (3.0 mg/kg – an SSRI used in premature ejaculation disorders) and fluoxetine (5.0 mg/kg – an SSRI) in non-stressed and prenatally stressed rats. It was found that vortioxetine, fluoxetine and dapoxetine reduced immobility time and rat locomotor activity which suggests antidepressant efficacy of these drugs both in monotherapy and in combined administration. The results also confirmed an anxiolytic effect of the study drugs in mono and combined therapy. Analysis of the pathomechanism of depression and the mechanisms of action of the individual drugs tested resulted in a prediction that combined administration of these drugs may be effective in the treatment of depressive disorders, although possible interactions between the drugs used must be assessed for. Considering the fact that dapoxetine is not currently used in depression treatment and vortioxetine is a relatively new drug, further research in this direction is vital, including within animal models.
Słowa kluczowe
Opis fizyczny
  • Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Poznan, Poland
  • Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Poznan, Poland
  • Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Poznan, Poland
  • Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Poznan, Poland
  • Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Poznan, Poland
  • Abramowski D, Rigo M, Duc D, Hoyer D, Staufenbiel M (1995) Localization of the 5hydroxytryptamine2C receptor protein in human and rat brain using specific antisera. Neuropharmacology 34: 1635–1645.
  • Artigas F (2013) Serotonin receptors involved in antidepressant effects. Pharmacol Ther 137: 119–131.
  • Baldwin DS, Loft H, Dragheim M (2012) A Randomised, doubleblind, placebo controlled, duloxetinereferenced, fixeddose study of three dosages of Lu AA21004 in acute treatment of major depressive disorder. Eur Neuropsychopharmacol 22: 482–491.
  • Barowsky J, Schwartz, TL (2006) An evidencebased approach to augmentation and combination strategies for: treatmentresistant depression. Psychiatry 3: 42–61.
  • Bhuvaneswari B, Shanti M, Thaivanai V, Parameswariv R, Shobhana M, Mathivani M (2015) Augmentation of antidepressant effect of SSRIS by aripiprazole. Int J Pharm Life Sci 6: 4317–4321.
  • Boulenger JP, Loft H, Olsen CK (2014) Efficacy and safety of vortioxetine (Lu AA21004), 15 and 20 mg/day: a randomized, doubleblind, placebocontrolled, duloxetinereferenced study in the acute treatment of adult patients with major depressive disorder. Int Clin Psychopharmacol 29: 138–149.
  • Burnet PW, Eastwood SL, Lacey K, Harrison PJ (1995) The distribution of 5HT1A and 5HT2A receptor mRNA in human brain. Brain Res 676: 157–168.
  • Crawley J, Goodwin, FK (1980) Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav 13: 167–170.
  • D’Agostino A, English CD, Rey JA (2015) Vortioxetine (brintellix): a new serotonergic antidepressant. PT 40: 36–40.
  • de Kloet ER, Molendijk ML (2016) Coping with the forced swim stressor: towards understanding an adaptive mechanism. Neural Plast 2016: 6503162.
  • du Jardin KG, Liebenberg N, Müller HK, Elfving B, Sanchez C, Wegener G (2016) Differential interaction with the serotonin system by Sketamine, vortioxetine, and fluoxetinein a genetic rat model of depression. Psychopharmacology 233: 2813–2825.
  • Drapier D, BentuéFerrer D, Laviolle B, Millet B, Allain H, Bourin M, Reymann JM (2007) Effects of acute fluoxetine, paroxetine and desipramine on rats tested on the elevated plusmaze. Behav Brain Res 176: 202–209.
  • Feuerstein TJ, Hüring H, van Velthoven V, Lücking CH, Landwehrmeyer GB (1996) 5HT1Dlike receptors inhibit the release of endogenously formed [3H]GABA in human, but not in rabbit, neocortex. Neurosci Lett 209: 210–214.
  • Frank C (2008) Recognition and treatment of serotonin syndrome. Can Fam Physician 54: 988–992.
  • GarciaGarcia AL, NewmanTancredi A, Leonardo ED (2014) 5HT(1A) [corrected] receptors in mood and anxiety: recent insights into autoreceptor versus heteroreceptor function. Psychopharmacology 231: 623–636.
  • Graziano MS, Aflalo TN, Cooke DF (2005) Arm movements evoked by electrical stimulation in the motor cortex of monkeys. J Neurophysiol 94: 4209–4223.
  • Guest PC, Knowles MR, MolonNoblot S, Salim K, Smith D, Murray F, Laroque P, Hunt SP, De Felipe C, Rupniak NM, McAllister G (2004) Mechanisms of action of the antidepressants fluoxetine and the substance P antagonist L000760735 are associated with altered neurofilaments and synaptic remodeling. Brain Res 1002: 1–10.
  • Guilloux JP, MendezDavid I, Pehrson A, Guiard BP, Repérant C, Orvoën S, David DJ (2013) Antidepressant and anxiolytic potential of the multimodal antidepressant vortioxetine (Lu AA21004) assessed by behavioural and neurogenesis outcomes in mice. Neuropharmacology 73: 147–159.
  • Hedlund PB, Sutcliffe JG (2004) Functional, molecular and pharmacological advances in 5HT7 receptor research. Trends in Pharmacol Sci 25: 481–486.
  • Jhanjee A, Kumar P, Bhatia MS, Srivastava S (2011) Dapoxetine – a novel drug for premature ejaculation. Delhi Psych J 14: 168–172.
  • Kamińska K, Gołembiowska K, Rogóż Z (2013) Effect of risperidone on the fluoxetineinduced changes in extracellular dopamine, serotonin and noradrenaline in the rat frontal cortex. Pharmacol Rep 65: 1144–1151.
  • Katona CL, Katona CP (2014) New generation multimodal antidepressants: focus on vortioxetine for major depressive disorder. Neuropsychiatr Dis Treat 10: 349–354.
  • Kendirci M, Salem E, Hellstrom WJ (2007) Dapoxetine, a novel selective serotonin transport inhibitor for the treatment of premature ejaculation. Ther Clin Risk Manag 3: 277–289. Kinnunen AK, Koenig JI, Bilbe G (2003) Repeated variable prenatal stress alters pre and postsynaptic gene expression in the rat frontal pole. J Neurochem 86: 736–48.
  • Londborg PD, Smith WT, Glaudin V, Painter JR (2000) Shortterm cotherapy with clonazepam and fluoxetine: anxiety, sleep disturbance and core symptoms of depression. J Affect Disord 61: 73–79.
  • Lucassen PJ, Pruessner J, Sousa N, Almeida OF, Van Dam AM, Rajkowska G, Swaab DF, Czéh B (2014) Neuropathology of stress. Acta Neuropathol 127: 109–135.
  • MachadoVieira R, Baumann J, WheelerCastillo C, Latov D, Henter ID, Salvadore G, Zarate CA (2010) The timing of antidepressant effects: a comparison of diverse pharmacological and somatic treatments. Pharmaceuticals 3: 19–41.
  • Malberg JE, Duman RS (2003) Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment. Neuropsychopharmacology 28: 1562–1571.
  • Maletic V, Robinson M, Oakes T, Iyengar S, Ball SG, Russell J (2007) Neurobiology of depression: an integrated view of key findings. Int J Clin Pract 61: 2030–2040.
  • McCarty E, Dinsmore W (2012) Dapoxetine: an evidencebased review of its effectiveness in treatment of premature ejaculation. Core Evid 7: 1–14.
  • Millan MJ (2005) Serotonin 5HT2C receptors as a target for the treatment of depressive and anxious states: focus on novel therapeutic strategies. Therapie 60: 441–460.
  • Molendijk ML, de Kloet ER (2015) Immobility in the forced swim test is adaptive and does not reflect depression. Psychoneuroendocrinology 62: 389–391.
  • Mørk A, Pehrson A, Brennum LT, Nielsen SM, Zhong H, Lassen AB, Stensbøl TB (2012) Pharmacological effects of Lu AA21004: a novel multimodal compound for the treatment of major depressive disorder. J Pharmacol Exp Ther 340: 666–675.
  • Mullins UL, Gianutsos G, Eison AS (1999) Effects of antidepressants on 5HT7receptor regulation in the rat hypothalamus. Neuropsychopharmacology 21: 352–367.
  • Nash JR, Sargent PA, Rabiner EA, Hood SD, Argyropoulos SV, Potokar JP, Nutt DJ (2008) Serotonin 5HT1A receptor binding in people with panic disorder: positron emission tomography study. Br J Psychiatry 193: 229–234.
  • Nowakowska E, Chodera A, Kus K (1996) Anxiolytic and memory improving activity of fluoxetine. Pol J Pharmacol 48: 255–260.
  • Nowakowska E, Kus K, Ratajczak P, Cichocki M, Woźniak A (2014) The influence of aripiprazole, olanzapine and enriched environment on depressantlike behavior, spatial memory dysfunction and hippocampal level of BDNF in prenatally stressed rats. Pharmacol Rep 66: 404–411.
  • Pae CU, Wang SM, Han C, Lee SJ, Patkar AA, Masand PS, Serretti A (2015) Vortioxetine: a metaanalysis of 12 shortterm, randomized, placebocontrolled clinical trials for the treatment of major depressive disorder. J Psychiatry Neurosci 40: 174–186.
  • Pandya M, Altinay M, Malone Jr DA, Anand A (2012) Where in the brain is depression? Curr Psychiatry Rep 14: 634–642.
  • Pehrson AL, Cremers T, Bétry C, van der Hart MG, Jørgensen L, Madsen M, Haddjeri N, Ebert B, Sanchez C (2013) Lu AA21004, a novel multimodal antidepressant, produces regionally selective increases of multiple neurotransmitters a rat microdialysis and electrophysiology study. Eur Neuropsychopharmacol 23: 133–45.
  • Porsolt RD, Anton G, Blavet N, Jalfre M (1978) Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 47: 379–391.
  • Pytka K, Partyka A, JastrzębskaWięsek M, Siwek A, GłuchLutwin M, Mordyl B, Wesołowska A (2015). Antidepressant and anxiolyticlike effects of new dual 5HT1A and 5HT7 antagonists in animal models. PloS One 10: e0142499.
  • Pytliak M, Vargová V, Mechírová V, Felšöci M (2011) Serotonin receptors – from molecular biology to clinical applications. Physiol Res 60: 15–25.
  • Ratajczak P, Kus K, Jarmuszkiewicz Z, Woźniak A, Cichocki M, Nowakowska E (2013) Influence of aripiprazole and olanzapine on behavioral dysfunctions of adolescent rats exposed to stress in perinatal period. Pharmacol Rep 65: 30–43.
  • Ratajczak P, Kus K, Skurzyńska M, Nowakowska E (2017) The influence of aripiprazole and venlafaxine on the antidepressantlike effect observed in prenatally stressed rats (animal model of depression). Hum Exp Toxicol 37: 972–982.
  • Ratajczak P, Wozniak A, Nowakowska E (2013) Animal models of schizophrenia: developmental preparation in rats. Acta Neurobiol Exp 73: 472–484.
  • Russo SJ, Nestler EJ (2012) The brain reward circuitry in mood disorders. Nat Rev Neurosci 14: 609–625.
  • Santana N, Bortolozzi A, Serrats J, Mengod G, Artigas F (2004) Expression of serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex 14: 1100–1109.
  • Serrats J, Mengod G, Cortes R (2005) Expression of serotonin 5HT2C receptors in GABAergic cells of the anterior raphe nuclei. J Chem Neuroanat 29: 83–91.
  • Sidorchuk A, Engström K, Johnson CM, Kayser Leeoza N, Möller J (2017) Employment status and psychological distress in a populationbased crosssectional study in Sweden: the impact of migration. BMJ Open 7: e014698.
  • Subhash MN, Srinivas BN, Vinod KY, Jagadeesh S (2000) Modulation of 5HT1A receptor mediated response by fluoxetine in rat brain. J Neural Transm 107(3): 377–87.
  • Stepanichev MY, Tishkina AO, Novikova MR, Levshina i.p., Freiman SV, Onufriev MV, Levchenko OA, Lazareva NA, Gulyaeva NV (2016) Anhedonia but not passive floating is an indicator of depressivelike behavior in two chronic stress paradigms. Acta Neurobiol Exp 76: 324–333.
  • Tatarczyńska E, Kłodzińska A, Stachowicz K, ChojnackaWójcik E (2004) Effect of combined administration of 5HT1A or 5HT1B/1D receptor antagonists and antidepressants in the forced swimming test. Eur J Pharmacol 487: 133–142.
  • Van den Hove DL, Blanco CE, Aendekerk B, Desbonnet L, Bruschettini M, Steinbusch HP, Prickaerts J, Steinbusch HW (2005) Prenatal restraint stress and longterm affective consequences. Dev Neurosci 27: 313–320.
  • WarnerSchmidt JL, Flajolet M, Maller A, Chen EY, Svenningsson P, Greengard P (2009) Role of p11 in cellular and behavioral effects of 5HT4 receptor stimulation. J Neurosci 29: 1937–1946.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.