Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 31 | 6 |
Tytuł artykułu

Ethylene action blockade and cold storage affect ripening of 'Golden' papaya fruit

Treść / Zawartość
Warianty tytułu
Języki publikacji
The purpose of this work was to evaluate the effects of ethylene action blockade and cold storage on the ripening of ‘Golden’ papaya fruit. Papayas harvested at maturity stage 1 (up to 15% yellow skin) were evaluated. Half of the fruits, whether treated or not treated with 100 nL L⁻¹ of 1-methylcyclopropene (1-MCP), were stored at 23°C, while the other half were stored at 11°C for 20 days prior to being stored at 23°C. Non-refrigerated fruits receiving 1-MCP application presented a reduction in respiratory activity, ethylene production, skin color development and pectinmethylesterase activity. Even with a gradual increase in ethylene production at 23°C, fruits treated with 1-MCP maintained a high firmness, but presented a loss of green skin color. Cold storage caused a decrease in ethylene production when fruits were transferred to 23°C. The results suggest that pulp softening is more dependent on ethylene than skin color development, and that some processes responsible for loss of firmness do not depend on ethylene.
Słowa kluczowe
Opis fizyczny
  • Plant Physiology, Agronomic Institute, C.P. 28, Campinas, SP 13012-970, Brazil
  • Department of Crop Science, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo, C.P. 09, Piracicaba, SP 13418-900, Brazil
  • An J, Paull RE (1990) Storage temperature and ethylene influence on ripening of papaya fruit. J Am Soc Hortic Sci 115:949–953
  • Archbold DD, Pomper KW (2003) Ripening pawpaw exhibit respiratory and ethylene climacterics. Postharvest Biol Technol 30:99–103. doi:10.1016/S0925-5214(03)00135-2
  • Argenta LC, Fan X, Mattheis JP (2003) Influence of 1-methylcyclopropene on ripening, storage life, and volatile production by d’Anjou cv. Pear fruit. J Agric Food Chem 51:3858–3864. doi: 10.1021/jf034028g
  • Biale JB, Young RE, Olmstead AJ (1954) Fruit respiration and ethylene production. Plant Physiol 29:168–174. doi:10.1104/pp. 29.2.168
  • Carvalho CRL, Mantovani DMB, Carvalho PRN, Moraes RMM (1990) Análises químicas de alimentos. ITAL, Campinas
  • Chan HT, Chang TSK, Stafford AE, Brekke JE (1971) Nonvolatile acids of papaya. J Agric Food Chem 19:263–265. doi:10.1021/jf60174a008
  • Chen N, Paull RE (1986) Development and prevention of chilling injury in papaya fruit. J Am Soc Hortic Sci 111:639–643
  • Dumville JC, Fry SC (2003) Solubilisation of tomato fruit pectins by ascorbate: a possible non-enzymic mechanism of fruit softening. Planta 217:951–961. doi:10.1007/s00425-003-1061-0
  • Fan X, Blankenship SM, Mattheis JP (1999) 1-Methylcyclopropene inhibits apple ripening. J Am Soc Hortic Sci 124:690–695
  • Fan X, Argenta LC, Mattheis JP (2000) Inhibition of ethylene action by 1-methylcyclopropene prolongs storage life of apricots. Postharvest Biol Technol 20:135–142. doi:10.1016/S0925-5214(00) 00121-6
  • Feng X, Apelbaum A, Sisler EC, Goren R (2000) Control of ethylene responses in avocado fruit with 1-methylcyclopropene. Postharvest Biol Technol 20:143–150. doi:10.1016/S0925-5214(00) 00126-5
  • Flores F, Ben Amor M, Jones B, Pech JC, Bouzayen M, Latché A, Romojaro F (2001) The use of ethylene-suppressed lines to assess differential sensitivity to ethylene of the various ripening pathways in Cantaloupe melons. Physiol Plant 113:128–133. doi: 10.1034/j.1399-3054.2001.1130117.x
  • Golding JB, Shearer D, Wyllie SG, McGlasson WB (1998) Application of 1-MCP and propylene to identify ethylene-dependent ripening processes in mature banana fruit. Postharvest Biol Technol 14:87–98. doi:10.1016/S0925-5214(98)00032-5
  • Huber DJ (1983) The role of cell wall hydrolases in fruit softening. Hortic Rev (Am Soc Hortic Sci) 5:169–219
  • Jacomino AP, Kluge RA, Brackmann A, Castro PRC (2002) Amadurecimento e senescência de mamão com 1-metilciclopropeno. Sci Agric 59:303–308. doi:10.1590/S0103-90162002000200015
  • Jeong J, Huber DJ (2004) Suppression of avocado (Persea americana Mill.) fruit softening and changes in cell wall matrix polysaccharides and enzyme activities: differential responses to 1-MCP and delayed ethylene application. J Am Soc Hortic Sci 129:752–759
  • Jeong J, Huber DJ, Sargent SA (2002) Influence of 1-methylcyclopropene (1-MCP) on ripening and cell-wall matrix polysaccharides of avocado (Persea americana) fruit. Postharvest Biol Technol 25:241–256. doi:10.1016/S0925-5214(01)00184-3
  • Kader AA (2002) Papaya. Accessed 20 May 2002
  • Kertesz ZI (1951) Pectic enzymes. In: The pectic substances. Interscience Publishers, Geneva, pp 333–375
  • Lalel HJD, Singh Z, Tan SC (2003) Maturity stage at harvest affects fruit ripening, quality and biosynthesis of aroma volatile compounds in ‘Kensington Pride’ mango. J Hortic Sci Biotechnol Kent 78:225–233
  • Lazan H, Ali ZM, Liang KM, Yee KL (1989) Polygalacturonase activity and variation in ripening of papaya fruit tissue depth and heat treatment. Physiol Plant 77:93–98
  • Lazan H, Selamat MK, Ali ZM (1995) β-Galactosidase, polygalacturonase and pectinesterase in differential softening and cell wall modification during papaya fruit ripening. Physiol Plant 95:106–112. doi:10.1111/j.1399-3054.1995.tb00815.x
  • Lelièvre JM, Latché A, Jones B, Bouzayen M, Pech JC (1997a) Ethylene and fruit ripening. Physiol Plant 101:727–739. doi: 10.1111/j.1399-3054.1997.tb01057.x
  • Lelièvre JM, Tichit L, Dao P, Fillion L, Young-Wao N, Pech JC, Latché A (1997b) Effects of chilling on the expressions of ethylene biosynthetic genes in Passe-Crassane pera (Pyrus communis L.) fruits. Plant Mol Biol 33:847–855. doi:10.1023/A:1005750324531
  • McDonald RE, McCollum TG, Baldwin EA (1999) Temperature of water heat treatments influences tomato fruit quality following low temperatures storage. Postharvest Biol Technol 16:147–155. doi:10.1016/S0925-5214(99)00008-3
  • Moya-León MA, Moya M, Herrera R (2004) Ripening of mountain papaya (Vasconcellea pubescens) and ethylene dependence of some ripening events. Postharvest Biol Technol 34:211–218. doi:10.1016/j.postharvbio.2004.05.005
  • Nair S, Singh Z, Tan SC (2004) Chilling injury in relation to ethylene biosynthesis in ‘Kensington Pride’ mango fruit. J Hortic Sci Biotechnol 79:82–90
  • Nakatsuka A, Shiomi S, Kubo Y, Inaba A (1997) Expression and internal feedback regulation of ACC synthase and ACC oxidase genes in ripening tomato fruit. Plant Cell Physiol 38:1103–1110
  • Paull RE, Chen NJ (1983) Postharvest variation in cell wall-degrading enzymes of papaya (Carica papaya L.) during fruit ripening. Plant Physiol 72:382–385. doi:10.1104/pp.72.2.382
  • Paull RE, Gross K, Qiu Y (1999) Changes in papaya cell walls during fruit ripening. Postharvest Biol Technol 16:79–89. doi:10.1016/S0925-5214(98)00100-8
  • Rhodes MJC (1980) The maturation and ripening of fruits. In: Thimann KV, Delman RC, Roth GS (eds) Senescence in plants. CRC Press, Boca Raton, pp 157–205
  • Selvaraj Y, Subramanyan MD, Iyer CPA (1982) Changes in the chemical composition of four cultivars of papaya (Carica papaya L.) during growth and development. J Hortic Sci 57:135–143
  • Sisler EC, Serek M (1997) Inhibitors of ethylene responses in plants at the receptor level: recent developments. Physiol Plant 100:577–582. doi:10.1111/j.1399-3054.1997.tb03063.x
  • Sisler EC, Dupille E, Serek M (1996) Effect of 1-methylcyclopropene and methylenecyclopropane on ethylene binding and ethylene action on cut carnations. Plant Growth Regul 18:79–86. doi: 10.1007/BF00028491
  • Solomos ST (1977) Cyanide-resistant respiration in higher plants. Annu Rev Plant Physiol 28:279–297. doi:10.1146/annurev. pp.28.060177.001431
  • Takeda Y, Yoza KI, Nogata Y, Kusumoto KI, Voragen AGJ, Ohta H (1997) Putrescine accumulation in banana fruit with ripening during storage. Phytochemistry 46:57–60. doi:10.1016/S0031-9422(97)00211-2
  • Theologis A (1992) One rotten apple spoils the whole bushel: the role of ethylene in fruit ripening. Cell 70:181–184. doi:10.1016/0092-8674(92)90093-R
  • Tian MS, Prakash S, Elgar HJ, Young H, Burmeister DM, Ross GS (2000) Responses of strawberry fruit to 1-methylcyclopropene (1-MCP) and ethylene. Plant Growth Regul 32:83–90. doi: 10.1023/A:1006409719333
  • Wang CY (1982) Physiological and biochemical responses of plants to chilling stress. Hortscience 17:173–186
  • Watkins CB (2006) 1-Methylcyclopropene (1-MCP) based technologies for storage and shelf life extension. Int J Postharvest Technol Innov 1(1):62–68
  • Wild HPJ, Woltering EJ, Peppelenbos W (1999) Carbon dioxide and 1-MCP inhibit ethylene production and respiration of pear fruit by different mechanisms. J Exp Bot 50:837–844. doi:10.1093/jexbot/50.335.837
  • Wills RBH, Widjanarko SB (1995) Changes in physiology, composition and sensory characteristics of Australian papaya during ripening. Aust J Exp Agric 35:1173–1176. doi:10.1071/EA995 1173
  • Wolucka BA, Van Montagu M (2003) GDP-mannose 30,50-epimerase forms GDP-L-gulose, a putative intermediate for the novo biosynthesis of vitamin C in plants. J Biol Chem 278:47483–47490. doi:10.1074/jbc.M309135200
  • Zegzouti H, Jones B, Marty C, Lelièvre JM, Latche A, Pech JC, Bouzayen M (1997) ER5, a tomato cDNA encoding an ethyleneresponsive LEA-like protein: characterization and expression in response to drought, ABA and wounding. Plant Mol Biol 35:847–854. doi:10.1023/A:1005860302313
Rekord w opracowaniu
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.