PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 6 |

Tytuł artykułu

Chelant-induced phytoextraction of heavy metals from contaminated soils: A review

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Chelant-induced phytoextraction is considered an ideal remedial technique for removing heavy metals from contaminated soils. However, it can increase the risk of adverse environmental effects due to increased metal mobilization and the persistence of both chelants and metal-chelant complexes for extended periods of time. This paper reviews the mechanism, potential risks, and optimization of chelant-induced phytoextraction of toxic metals from contaminated soils. The advantages and major drawbacks of phytoextraction, along with possible strategies to reducing the risks associated with chelant application, are reviewed. Moreover, the directions for future research on chelant-assisted phytoextraction are briefly discussed. The objective of this paper was to comprehensively review chelant-assisted phytoextraction, and it will provide an effective and safe remediation technology for heavy metal-contaminated soils.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

6

Opis fizyczny

p.2417-2424,fig.,ref.

Twórcy

autor
  • Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers University, Yancheng, Jiangsu, China
  • Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, Jiangsu, China
  • School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, China
autor
  • Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers University, Yancheng, Jiangsu, China
  • Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, Jiangsu, China
autor
  • Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers University, Yancheng, Jiangsu, China
  • Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, Jiangsu, China
autor
  • Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers University, Yancheng, Jiangsu, China
  • Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, Jiangsu, China

Bibliografia

  • 1. Tsang D.C.W., Yip T.C.M., Lo I.M.C. Simulation of kinetic extraction of heavy metals during chelant-enhanced soil washing. J Soil Sediment. 11, 1221, 2011.
  • 2. Zhao Y., Mao G., Xia H.H., Gao L. Effects of EDTA and EDDS on Heavy Metal Activation and Accumulation of Metals by Soybean in Alkaline Soil. Soil Sediment Contam. 24, 353, 2015.
  • 3. Fabbricino M., Ferraro A., Del Giudice G., d’Antonio L. Current views on EDDS use for ex situ washing of potentially toxic metal contaminated soils. Rev Environ Sci Bio. 12, 391, 2013.
  • 4. Kramer U. Metal Hyperaccumulation in Plants, in: Merchant, S., Briggs, W.R., Ort, D. (Eds.). Annu Rev Plant Biol. 61, 517, 2010.
  • 5. Xia B.C., Shen S.L., Xue F. Phytoextraction of heavy metals from highly contaminated soils using Sauropus androgynus. Soil Sediment Contam. 22, 631, 2013.
  • 6. Padmapriya S., Murugan N., Ragavendran C., Thangabalu R., Natarajan D. Phytoremediation Potential of some Agricultural Plants on Heavy Metal Contaminated Mine Waste Soils, Salem District, Tamilnadu. Int J Phytoremediat. 18, 288, 2016.
  • 7. Luo C.L., Shen Z.G., Lou L.Q., Li X.D. EDDS and EDTA-enhanced phytoextraction of metals from artificially contaminated soil and residual effects of chelant compounds. Environ Pollu. 144, 862, 2006.
  • 8. Mench M., Lepp N., Bert V., Schwitzguébel J.P., Gawronski S.W., Schröder P., Vangronsveld J. Successes and limitations of phytotechnologies at field scale: outcomes, assessment and outlook from COST Action 859. J Soil Sediment. 10, 1039, 2010.
  • 9. Ramamurthy A.S., Memarian R. Chelate enhanced phytoremediation of soil containing a mixed contaminant. Environ Earth Sci. 72, 201, 2013.
  • 10. Nowack B., Schulin R., Robinson B.H. Critical Assessment of Chelant - Enhanced Metal Phytoextraction. Environ Sci Technol. 40, 5225, 2006.
  • 11. Evangelou M.W.H., Bauer U., Ebel M., Schaeffer A. The influence of EDDS and EDTA on the uptake of heavy metals of Cd and Cu from soil with tobacco Nicotiana tabacum. Chemosphere. 68, 345, 2007.
  • 12. Yang L., Wang G.P., Cheng Z.N., Liu Y., Shen Z.G., Luo CL. Influence of the application of chelant EDDS on soil enzymatic activity and bacterial community composition. J Hazard Mater. 262, 561, 2013.
  • 13. She W., Cui G.X., Jie Y.C., Bai Y.C., Cao Y., Xiao C.X. Comparative effects of chelants on plant growth, cadmium uptake and accumulation in nine cultivars of Ramie (Boehmeria nivea). Acta Agr Scand B-S P. 64, 71, 2014.
  • 14. Yeh T.Y., Lin C.L., Lin C.F., Chen C.C. Chelatorenhanced phytoextraction of copper and zinc by sunflower, Chinese cabbage, cattails and reeds. Int J Sci Technol. 12, 327, 2015.
  • 15. Lee J.H., Sung K.J. Effects of chelates on soil microbial properties, plant growth and heavy metal accumulation in plants. Ecol Eng. 73, 386, 2014.
  • 16. GHOSH M., SINGH S.P. A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J Energy Environ. 6 (4), 18, 2005.
  • 17. Wang H.Q., Lu S.J., Li H., Yao Z.H. EDTA-enhanced phytoremediation of lead contaminated soil by Bidens maximowicziana. J Environ Sci-China. 19, 1496, 2007.
  • 18. Chaney R.L., Broadhurst C.L., Centofanti T. Phytoremediation of soil trace elements. In: Hooda, P.S. (Ed.), Trace Elements in Soils. Blackwell Publishers, Oxford, UK, 311, 2010.
  • 19. Álvarez-López V., Prieto-Fernández Á., Cabello-Conejo M.I., Kidd P. Organic amendments for improving biomass production and metal yield of Ni-hyperaccumulating plants. Sci Total Environ. 548-549, 370, 2016.
  • 20. Bolan N., Kunhikrishnan A., Thangarajan R., Kumpiene J., Park J., Makino T., Kirkham M.B., Scheckel K. Remediation of heavy metal (loid) s contaminated soils-to mobilize or to immobilize? J Hazard Mater. 266, 141, 2014.
  • 21. Pollard A.J., Reeves R.D., Baker A.J.M. Facultative hyperaccumulation of heavy metals and metalloids. Plant Sci. 217-218, 8, 2014.
  • 22. Ebbs S.D., Lasat M.M., Bradyr D.J., Cornish J., Gordon R., Kochian L.V. Phytoextraction of cadmium and zinc from a contaminated site. J Environ Qual. 26, 1424, 1997.
  • 23. Kidd P., Mench M., Álvarez-López V., Bert V., Dimitriou I., Friesl-Hanl W., Herzig R., Janssen J.O., Kolbas A., Muller I. Agronomic practices for improving gentle remediation of trace elementcontaminated soils. Int J Phytoremediat. 17, 1005, 2015.
  • 24. Mahar A., Wang P., Ali A., Awasthi M.K., Lahori A.H., Wang Q., Li R.H., Zhang Z.Q. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotox Environ Safe. 126, 111, 2016.
  • 25. Huang J.W., Chen J., Berti W.R., Ensley B.D. Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol. 31, 800, 1997.
  • 26. Nowack B., Vanbriesen J.M. In Biogeochemistry of Chelating Agents, American Chemical Society: Washington, DC, 204, 2005.
  • 27. Salt D.E., Blaylock M., Kumar PBAN, Dushenkov V., Ensley B.D., Chet I., Raskin I. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Nat Biotechnol. 13, 468, 1995.
  • 28. Arwidsson Z., Allard B.. Remediation of metal-contaminated soil by organic metabolites from fungi II: Metal redistribution. Water Air Soil Poll. 207, 5, 2010.
  • 29. Nowack B. Environmental chemistry of aminopolycarboxylate chelating agents. Environ Sci Technol. 36, 4009, 2002.
  • 30. Zhang W., Tsang D.C.W. Conceptual framework and mathematical model for the transport of metal-chelant complexes during in-situ soil remediation. Chemosphere. 91, 1281, 2013.
  • 31. Sarret G., Vangrensveld J., Manceau A., Musso M., D’Haen J., Menthonnex J.J., Hazemann J.L. Accumulation forms of Zn and Pb in Phaseolus vulgaris in the presence and absence of EDTA. Environ Sci Technol. 35, 2854, 2001.
  • 32. Wei L., Luo C.L., Wang C.C., Li X.D., Shen Z.G. Biodegradable chelating agent ethylenediamine disuccinic acid reduces uptake of copper through alleviation of copper toxicity in hydroponically grown Chrysanthemum coronarium L. Environ Toxicol Chem. 26, 749, 2007.
  • 33. Fu Y.Z., Lei W.R., Shen Z.G., Luo C.L. Permeability of Plant Young Root Endodermis to Cu Ions and Cu-Citrate Complexes in Corn and Soybean. Int J Phytoremediat. 17, 822, 2015.
  • 34. Tandy S., Schulin R., Nowack B. Uptake of metals during chelant-assisted phytoextraction with EDDS related to the solubilized metal concentration. Environ Sci Technol. 40, 2753, 2006.
  • 35. Tian S.K., Lu L.L., Yang X.E., Webb S.M., Du Y.H., Brown P.H. Spatial imaging and speciation of lead in the accumulator plant sedumalfredii by microscopically focused synchrotron X-ray investigation. Environ Sci Technol. 44, 5920, 2010.
  • 36. Bell P.F., Chaney R.L., Angle J.S. Free metal activity and total metal concentrations as indexes of micronutrient availability to barley. Plant Soil. 130, 51, 1991.
  • 37. Niu L.Y., Shen Z.G., Wang C.C. Sites, pathways, and mechanism of absorption of Cu-EDDS complex in primary roots of maize (Zea Mays L.): anatomical, chemical and histochemical analysis. Plant Soil. 343, 303, 2011.
  • 38. Leštan D., Luo C.L., Li X.D. The use of chelating agents in the remediation of metal-contaminated soils: A review. Environ Pollut. 153, 3, 2008.
  • 39. Luo C.L., Shen Z.G., Li X.D. Hot NTA application enhanced metal phytoextraction from contaminated soil. Water Air Soil Poll. 188, 127, 2008.
  • 40. Grčman H., Vodnik D., Velikonja-Bolta S., Leštan D. Ethylenediamine Dissuccinate as a new chelate for environmentally safe enhanced lead phytoextraction. J Environ Qual. 32, 500, 2003.
  • 41. Lai H.Y. Negative Effects of Chelants on Soil Qualities of Five Soil Series. Int J Phytoremediat. 17, 228, 2015.
  • 42. Ultra V.U., Yano A., Iwasaki K., Tanaka S., Mei K.Y., Sakurai K. Influence of chelating agent addition on the copper distribution and microbial activity in soil and copper uptake by brown mustard (Brassica juncea). Soil Sci Plant Nutr. 51, 193, 2005.
  • 43. Sato K., Nakamura Y., Ohtsuki K. Different arrangement of ε-(γ -glutamyl)lysine cross-linking in Alaska Pollock (Theragra chalcogremma) surimi proteins by Streptoverticillium and endogenous transglutaminases during suwari process. J Food Biochem. 25, 397, 2001.
  • 44. Epelde L., Hernandez-Allica J., Becerril J.M., Blanco F., Garbisu G. Effects of chelates on plants and soil microbial community: Comparison of EDTA and EDDS for lead phytoextraction. Sci Total Environ. 401, 21, 2008.
  • 45. Yang L., Luo C.L., Liu Y., Quan L.T., Chen Y.H., Shen Z.G. Residual effects of EDDS leachates during EDDS-assisted phytoremediation of copper contaminated soil. Sci Total Environ. 444, 263, 2013.
  • 46. Sapoundjieva K., Kartalska Y., Vassilev A., Naidenov M., Kuzmanova I., Krastev S. Effects of the chelating agent EDTA on metal solubility in the soil, metal uptake and performance of maize plants and soil microorganisms. Bulg J Agric Sci. 9, 659, 2003.
  • 47. Vamerali T., Bandiera M., Lucchini P., Mosca G. Metal partitioning in plant-substrate-water compartments under EDDS-assisted phytoextraction of pyrite waste with Brassica carinata A. Braun. Environ Sci Pollut R. 22, 2434, 2015.
  • 48. Michael W.H., Evangelou U.B., Mathias E., Andreas S. The influence of EDDS and EDTA on the uptake of heavy metals of Cd and Cu from soil with tobacco Nicotiana tabacum. Chemosphere. 68, 345, 2007.
  • 49. Jean F., Bordas F., Bollinger J.C. Column leaching of chromium and nickel from a contaminated soil using EDTA and citric acid. Environ Pollut. 164, 175, 2012.
  • 50. Wang A.G., Luo C.L., Yang R.X., Chen Y.H., Shen Z.G., Li X.D. Metal leaching along soil profiles after the EDDS application-a field study. Environ Pollut. 164, 204, 2012.
  • 51. Fine P., Paresha R., Beriozkina A., Hass A. Chelant-enhanced heavy metal uptake by Eucalyptus trees under controlled deficit irrigation. Sci Total Environ. 493, 995, 2014.
  • 52. Chen F., Tan M., Ma J., Li G. Qu J.F. Restoration of manufactured gas plant site soil through combined ultrasound-assisted soil washing and bioaugmentation. Chemosphere. 146, 289, 2016.
  • 53. Meers E., Ruttens A., Hopgood M.J., Samson D., Tack FMG. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere. 58, 1011, 2005.
  • 54. Schowanek D., Feijtel T.C.J., Perkins C.M., Hartman F.A., Federle T.W., Larson R.J. Biodegradation of S, S, R, R and mixed stereoisomers of ethylene diamine disuccinic acid (EDDS), a transition metal chelator. Chemosphere. 34, 2375, 1997.
  • 55. Jaworska J.S., Schowanek D., Feijtel T.C.J. Environmental risk assessment for trisodium [S, S]- ethylene diamine disuccinate, a biodegradable chelator used in detergent applications. Chemosphere. 38, 3597, 1999.
  • 56. Hauser L., Tandy S., Schulin R., Nowack B. Column extraction of heavy metals from soils using the biodegradable chelating agent EDDS. Environ Sci Technol. 39, 6819, 2005.
  • 57. Vandevivere P.C., Savey H., Verstraete W., Feijtel T.C., Schowanek D.R. Biodegradation of metal-[S, S]-EDDS complexes. Environ Sci Technol. 35, 1765, 2001.
  • 58. Luo C.L., Shen Z.G., Li X.D. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere. 59, 1, 2005.
  • 59. Meers E., Tack F.M.G, Verloo M.G. Degradability of ethylenediaminedisuccinic acid (EDDS) in metal contaminated soils: implications for its use soil remediation. Chemosphere. 70, 358, 2008.
  • 60. Lo I.M.C., Tsang D.C.W., Yip T.C.M., Wang F., Zhang W.H. Significance of metal exchange in EDDS-flushing column experiments. Chemosphere. 83, 7, 2011.
  • 61. Shen Z.G., Chen H.M. Phytoremediation and heavy metal hyperaccumulator, China Agricultural University press, Beijing, 216, 2000.
  • 62. Pastor J., Aparicio A.M., Gutierrez-Maroto . Effects of two chelating agents (EDTA and DTPA) on the autochthonous vegetation of a soil polluted with Cu, Zn and Cd. Sci Total Environ. 378, 114, 2007.
  • 63. Komárek M., Vanek A., Mrnka L., Sudová R., Száková R., Tejnecký V., Chrastný V. Potential and drawbacks of EDDS-enhanced phytoextraction of copper from contaminated soils. Environ Pollut. 158, 2428, 2010.
  • 64. Tsang D.C.W., Yip T.C.M., Lo I.M.C. Kinetic interactions of EDDS with soils. 2. Metal-EDDS complexes in uncontaminated and metal-contaminated soils. Environ Sci Technol. 43, 837, 2009.
  • 65. Chen X.T., Wang X., Chen X. Study on the extraction efficiency of heavy metals by chelates. Jiangsu Environ Sci Technol. 18, 9, 13, 2005.
  • 66. Guo H.Y., Wang W., Sun YY, Li H., Ai F.X., Xie L., Wang X.R. Ethyllactate enhances ethylenediamine disuccinic acid solution removal of copper from contaminated soils. J Hazard Mater. 174, 59, 2010.
  • 67. Hu Y.H., Wei S.H., Zhou Q.X., Zhan J., Ma L.H., Niu R.C., Li Y.Y., Wang S.. Application of Chelator in Phytoremediation of Heavy Metals Contaminated Soils: A Review. J Agro-Environ Sci. 29, 2055, 2010.
  • 68. Chen Y.H., Li X.D., Shen Z.G. Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process. Chemosphere. 57, 187, 2004.
  • 69. Lingua G., Todeschini V., Grimaldi Michele , Baldantoni D., Proto A., Cicatelli A., Biondi S., Torrigiani P., Castiglione S. Polyaspartate, a biodegradable chelant that improves the phytoremediation potential of poplar in a highly metal-contaminated agricultural soil. J Environ Manage. 132, 9, 2014.
  • 70. Chen Z.J., Sheng X.F., He L.Y., Huang Z., Zhang W.H. Effects of root inoculation with bacteria on the growth, Cd uptake and bacterial communities associated with rape grown in Cd-contaminated soil. J Hazard Mater. 244-245, 709, 2013.
  • 71. Luo C.L., Shen Z.G., Baker A.J.M., Li X.D. A novel strategy for chemically enhanced phytoremediation of heavy metal-contaminated soils. Plant Soil. 285, 67, 2006.
  • 72. Chen Y.H., Wang C.C., Wang G.P., Luo C.L., Mao Y., Shen Z.G., Li X.D. Heating treatment schemes for enhancing chelant-assisted phytoextraction of heavy metals from contaminated soils. Environ Toxicol Chem. 27, 888, 2008.
  • 73. Li H.F., Wang Q.R., Cui Y.S., Dong Y.T., Christie P. Slow release chelate enhancement of lead phytoextraction by corn (Zea mays L.) from contaminated soil–a preliminary study. Environ Pollut. 339, 179, 2005.
  • 74. Xie Z., Wu L., Chen N., Liu C., Zheng Y., Xu S.G., LI F.B., XU Y.L. Phytoextraction of Pb and Cu contaminated soil with maize and microencapsulated EDTA. Int J Phytoremediat. 14, 727, 2012.
  • 75. Kos B., Leštan D. Soil washing of Pb, Zn and Cd using biodegradable chelator and permeable barriers and induced phytoextraction by Cannabis sativa. Plant Soil. 263, 43, 2004.
  • 76. Yang L., Jiang L.F., Wang G.P., Chen Y.H., Shen Z.G., Luo C.L. Assessment of amendments for the immobilization of Cu in soils containing EDDS leachates. Environ Sci Pollut R. 22, 16525, 2015.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-383ac6d2-5573-428d-b65f-b02fb145f817
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.