
ТЕKA. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE – 2017, Vol. 17, No.1, 5-14

Implementation of genetic algorithm in electric machines optimization

using Netbeans IDE and Java

V. Pliuhin
1
, M. Sukhonos

1
, A. Petrenko

1
, A. Ehorov

2

1
O.M. Beketov National University of Urban Economy in Kharkiv; e-mail: vlad.plyugin@gmail.com

2
National Technical University «Kharkiv Polytechnic Institute»; e-mail: toe@mail.ru

Received January 10. 2017: accepted January 27. 2017

Summary. In this paper the comparative analysis of

existent optimization algorithms efficiency is made. The

substantive provisions of genetic algorithms theory are

considered. Possibility of applicability of genetic

algorithms in the optimal design of electric machines was

investigated. Results over of the classic genetic algorithm

practical realization in induction motors optimization with

a squirrel-cage rotor are done.

Key words: design, induction motor, optimization,

objective function, genetic algorithm, efficiency, criteria,

program.

INTRODUCTION

Neuron networks, being one of perspective

directions of researches in area of artificial intelligence,

were created as a result of watching processes, what be

going on in the human nervous system. By the same way

genetic algorithms were also «invented» and watched yet

not the human nervous system but the process of living

organisms’ evolution.

Genetic algorithms – one of researches directions in

the area of artificial intelligence, engaging in creation of

living organism’s evolution simplified models for the

solving of optimization tasks [1–4].

RESEARCHES PROBLEM

Now for the solving of optimization tasks different

methods are used, which in general case it is possible to

classify on continuous, discrete and integer. In turn, the

transferred tasks are divided into integer, unidimensional

and multidimensional [5].

The basic problem of the applied optimization

algorithms is a search of function extremum in cases with

a nonlinear search area and development of methods on

reduction of search time and computer resources in

intricate problems [6].

Using of genetic algorithm (GA) in optimization

allows at the minimal time and calculable resources to get

the extremum of objective function, is examined in this

paper. The aim of work is consideration of features of

classic GA application in electric machines optimal

design and implementation efficiency criteria search.

CLASSIC GENETIC ALGORITHM STRUCTURE

At description GA use determinations, adopted from

genetics. For instance, speaking about the population of

individuals, as base concepts a gene, chromosome,

genotype, phenotype (Fig. 1) are used [8, 9].

Fig. 1. Genotype and phenotype in GA

In given gene example (Fig. 1) the number «001»

represents the first chromosome in binary notation and

corresponds to «1» in decimal notation for «Item 1». The

second chromosome with number «100» in binary

notation corresponds to «4» in decimal notation for

«Item 2».

Some determinations of GA theory correspond to

terms from a technical vocabulary, in particular, «circuit»,

«binary sequence», «structure» [7].

Classic GA consists of next steps (Fig. 2):

1) initializing, or choice of initial chromosomes

population;

2) an estimation of adjusted chromosomes in a

population – calculation of adjusted function for every

chromosome;

3) verification of algorithm stop condition;

4) chromosomes selection – selection of those

chromosomes which will take part in creation of

descendants for a next population;

5) application of genetic operators is mutations and

crossing;

6) forming of new population;

7) selection of the «best» chromosome.

Simple GA generates an initial population of casual

character. Genetic algorithm work is an iteration process

which proceeds until the set number of generations or

some another stop criteria will not be executed. On every

generation a proportional selection will be realized on

adjusting, crossing and mutation. Chromosomes, got as a

result of application of genetic operators to the

chromosomes of temporal paternal population, are

included in the complement of new population. They

become so-called current population [10] for this iteration

of GA (Fig. 3).

To every chromosome, designated chi for i = 1,

2…N (where N is a quantity of population) corresponds

mailto:vlad.plyugin@gmail.com
mailto:toe@mail.ru

6 V. Pliuhin, M. Sukhonos, A. Petrenko, A. Ehorov

the sector of a wheel v(chi), represented in percent format

according to equations (1), (2):

Fig. 2. The classic GA structure

Fig. 3. Example of crossing realization in GA

 100isi chp=chv , (1)

N

=i

i

i
is

chF

chF
=chp

1

, (2)

where: F(chi) – a value of function of adjusted of chromo-

some of chi;

ps(chi) – chance of chi chromosome selection.

The chromosome selection can be presented as a

result of roulette’s wheel turn (Fig. 4) as a «winning» (i.e.

chosen) chromosome behaves to the falling out sector of

this wheel [7].

Fig. 4. Roulette’s wheel in GA

Obviously, that the bigger sector, the high chance of

«victory» of corresponding chromosome. Therefore,

probability of current chromosome choice is proportional

to the value of it adjusting function.

If we represent roulette wheel sectors as a digital

interval [0, 100], the chromosome choice can be evaluated

with the number choice from the interval [A, B], where A

and B designate beginning and completion of

circumference fragment, corresponding to some sector of

wheel, where 0 ≤ A < B ≤ 100. In this case a choice by

means of roulette wheel is taken to the choice of number

from an interval [0, 100], which corresponds to the

concrete point on the circumference of wheel. There are

also other methods of selection [8, 9].

The crossing operation consists in a chain fragments

exchange the between two paternal chromosomes. The

pair of parents for crossing get out from a paternal pool

casual character so that probability of choice of concrete

chromosome for crossing was equal to probability pc. For

example, if we have parents with two chosen

chromosomes from a paternal population with quantity N,

then pc = 2/N. Analogically, if from a paternal population

with quantity N a 2z chromosomes (z < N/2), which form

z parent’s pairs, were chosen, then pc = 2z/N. We will pay

attention, that if all chromosomes of current population

IMPLEMENTATION OF GENETIC ALGORITHM IN ELECTRIC MACHINES OPTIMIZATION… 7

are incorporated in pair to crossing, then pc = 1.

After the crossing operation parents in a paternal

population substituted by their descendants.

The operation of mutation changes the values of

genes in chromosomes with the probability pm. It results

in inverting of values of the selected genes from 0 to 1

and back. Value pm, as a rule, very small, therefore the

mutation of small amount of genes is exposed. Crossing is

a key operator of GA and determine their possibilities and

efficiency. A mutation plays more limited role. It enters in

a population some variety and warns losses which would

happen because of exception of some meaningful gene as

a result of crossing.

As a result of selection process a paternal

population, also called a paternal pool, is created with the

quantity N, equal to a quantity of current population.

The optimization order of the GA [6] differs from

previously considered for Cartesian Product [11, 12, 13]

and have the next steps:

1) setting the range of the varied variables;

2) setting limitations;

3) choosing the optimality criteria;

4) calling the GA optimization function and getting

the optimal set of the varied variables;

5) for founding set calling the function of automatic

aim object (in our case – induction motor) calculation.

On every next iteration the values of adjusted

function of settle accounts for all chromosomes of this

population are calculated. The stop algorithm condition

is whereupon checked up and a result is either fixed as a

chromosome with the high value of adjusted function or

comes true passing to the next step of GA, i.e. to the

selection.

GA PROGRAMMATIC REALIZATION

We will consider an example of induction motor

with squirrel cage rotor (IM) optimization with

programmatic GA realization on Java in the freeware IDE

NetBeans. For a decision of the set problem we will use

freely expandable Java library EvoJ (“Evolution Java”)

[14]. A project EvoJ is planned as upgradable framework

of Java classes for the solving of various optimization

tasks by means of evolutional (genetic) algorithms. For

the use of EvoJ a programmer has to implement one

simple interface, consisting of one method only. All other

steps undertake EvoJ algorithm.

In an example it will be considered two varied

variables: internal diameter of stator core and length of

stator core [15, 16].

We create Java interface with the name Solution, in

which we set the turn-down (minimum and maximal

values) of the varied variables.

//Code of Solution interface:

package MotorClasses;

import

net.sourceforge.evoj.core.annotation.MutationRange;

import net.sourceforge.evoj.core.annotation.Range;

public interface Solution {

 //Stator core inner diameter limits

 String smin1 = "165";

 String smax1 = "205";

 //Stator core length limits

 String smin2 = "115";

 String smax2 = "145";

 //@MutationRange("0.1")

 @Range(min = smin1, max = smax1)

 double getX(); //return an optimal diameter

 @Range(min = smin2, max = smax2)

 double getY(); //return an optimal length

}

EvoJ is able to change the variable without a range

changes of variables [14]. However, if it is needed to

implement own mutation strategy, we need to declare

setters because in other case variables cannot be changed.

The Evoj library does not allow to change a kind,

range and step of the varied variables during dynamic

implementation of the computer program, foreseeing their

change only in the interface code of the computer

program. Due to the authors’ applied modifications this

fault was removed.

Now a range and step of the varied variables of GA

allow to change directly during implementation of the

program on a computer. In addition, modified GA is

adapted for application in electrical machines object-

oriented design.

Pay attention to annotation @Range, that sets the

range of values which a variable can accept. Variables are

initiated by casual values from the set range. However, as

a result of mutation, they potentially can go out for the

indicated range. It can be prevented, using the parameter

strict=«true», that will not allow a variable to take on an

impermissible value, even if to make an effort to propose

him, using setter-method.

Another moment on which it is needed to pay

attention here, it that all parameters of all code

annotations in EvoJ are lines, it allows, both to specify the

value of parameter directly and specify the name

property instead of concrete value, hardly not to specify

the value of annotation parameters in compile-time.

We have an interface with variables, now we will

write a fitness-function. It is recommended to implement

this interface indirectly, through helper-classes which

undertake some service functions: elimination of old

decisions (if the maximal decision life time is set),

cashing of function value for decisions which were not

sifted from on the previous GA iteration.

A fitness-function for our case will look like the next

(we create a new class with the name Rating):

//Fitness-function

package MotorClasses;

import net. source for ge. evoj. strategies. sorting.

Abstract Simple Rating;

public class Rating extends AbstractSimpleRating

<Solution> {

 static AMotor mot;//object of motor

 static int krit;//index of optimality criterion

8 V. Pliuhin, M. Sukhonos, A. Petrenko, A. Ehorov

 static int iter_numb;//number of iterations

 //Designer

 public void set_motor(AMotor mot, int krit){

 this.mot = mot;

 this.krit = krit;

 this.iter_numb = 0;

 }

 //get iterations number

 public int get_iter(){return this.iter_numb;};

 public static double calcFunction(Solution solution){

 iter_numb++;//increase number of iterations

 double x = solution.getX();//get new diameter

 double y = solution.getY();//get new length

 mot.stator.set_D(x/1000);//setting of new diameter

 mot.stator.set_ld(y/1000);//setting of new length

 //automatic motor parameters calculation

 double fn = mot.auto(krit);

 return fn;//return optimality criterion

 }

 @Override

 public Comparable doCalcRating(Solution solution){

 //call of calculation function

 double fn = calcFunction(solution);

 boolean flag = mot.control();//control of limitations

 if (Double.isNaN(fn) | flag == false){

 return null;//screening-out of false variant

 } else {

 return - fn;//return of effective variant

 }

 }

}

Here all obviously enough, we simply take and

count our function, using variables from the Solution

interface. Because we search minimum, and the contract

of class supposes that the best decisions are due to have

the greater rating, then we return the value of function,

increased on –1.

In addition, we sift from false decisions (if NaN

turned out or limitations were not passed), returning null.

In the IM class Motor we create the function of

automatic calculation, which differs in that accepts as an

argument the index of optimality criterion and returns the

got criterion after the motor calculation:

double auto(int khit){

int res = 0;

//Body of motor calculation code

//…

switch (krit){

 case 1://1 is Efficiency

 res = 1/kpdnr;

 break;

 case 2://2 – Power Factor

 res = 1/cosFinr;

 break;

 case 3://3 – Start Current Ratio

 res = I1pn;

 break;

 case 4://4 – Start Torque Ratio

 res = 1/Mpo;

 break;

}

 return res;//return of criterion depending on it index

}

Further in the IM class Motor we create the function

of GA realization (a structure is explained in comments

below):

void optimization(int krit){

DefaultPoolFactory pf = new DefaultPoolFactory();

//creation of populations

GenePool<Solution> pool = pf.createPool(populations,

Solution.class, null);

Rating rtg = new Rating();//designer of class of Rating

rtg.set_motor(this, krit);//setting of optimum criteria

//factory of primary solutions generation

DefaultHandler handler = new DefaultHandler(rtg, null,

null, null);

//making of iterations in populations

handler.iterate(pool, iterations);

//get the best found solution

Solution solution = pool.getBestSolution();

D_opt = solution.getX()/1000; //optimal diameter

L_opt = solution.getY()/1000; //optimal length

int iter = rtg.get_iter(); //get the number of iterations

}

The code of GA optimization starting consists only

of two lines:

//motor.limits();//setting of limitations

//motor.optimization(krit);//optimization with the criteria

krit

If a solution does not satisfy, it is possible to

continue the iterations of GA (increasing the number of

populations and iterations), while the desired quality of

solution will not be attained [15]. Example of GA

realization in listing 1 is shown.

Listing 1. Example of GA realization

//GA is the main module

public void GeneAlgorithm(int var, int krit){

DefaultPoolFactory pf = new DefaultPoolFactory();

GenePool<Solution> pool = pf.createPool(populations,

Solution.class, null);

Rating rtg = new Rating();

rtg.set_motor(this, krit);

DefaultHandler handler = new DefaultHandler(rtg, null,

null, null);

handler.iterate(pool, iterations);

Solution solution = pool.getBestSolution();

double x = solution.getX();

double y = solution.getY();

int iter = rtg.get_iter();

opt_pareto = new Vector();

IMPLEMENTATION OF GENETIC ALGORITHM IN ELECTRIC MACHINES OPTIMIZATION… 9

opt_pareto.add(x/1000);

opt_pareto.add(y/1000);

opt_pareto.add(iter);

 } //End of the main module of HA

//GA main realization

public class Rating extends AbstractSimpleRating

<Solution> {

static Reactor reactor;

static int krit;

static int iter_numb;

static boolean flag;

public void set_reactor(Reactor react, int krit){

this.reactor = react;

this.krit = krit;

this.iter_numb = 0;

this.flag = false;

 }

 public int get_iter(){return this.iter_numb;};

 public static double calcFunction(Solution solution){

 flag = true;

 iter_numb++;

 double Di = (double) solution.getInnerDiameter();

 double Dw = (double) solution.getWireDiameter();

 int nt = solution.getTurns();

 int np = solution.getNumParallelWires();

 reactor.set_innerDiameter((double)Di);

 ((RoundReactor) reactor).set_diameter(Dw/1000);

 reactor.set_numTurns(nt);

 reactor.set_numParallelWire(np);

 ((RoundReactor) reactor).ControlGA();//wire

 double fn =

((RoundReactor)reactor).CalculationGA(krit);

 //Last control

 flag = reactor.Control();

 return fn;

 }

 @Override

 public Comparable doCalcRating(Solution solution){

double fn = calcFunction(solution);

 if (Double.isNaN(fn) | flag == false){

 return null;

 } else {

 return - fn;

 }

 }

}

//GA interface of the varied variables

public interface Solution {

 //Inner Diameter

 String smin1 = "20";

 String smax1 = "1000";

 //Wire Diameter (x1000)

 String smin2 = "50";

 String smax2 = "4000";

 //Number of Turns

 String smin3 = "1";

 String smax3 = "1000";

 //Number of Parallel Wires

 String smin4 = "1";

 String smax4 = "3";

 @MutationRange("10")

 @Range(min = smin1, max = smax1, strict = "true")

 int getInnerDiameter();

 @MutationRange("1")

 @Range(min = smin2, max = smax2, strict = "true")

 int getWireDiameter();

 @MutationRange("1")

 @Range(min = smin3, max = smax3, strict = "true")

 int getTurns();

 @MutationRange("1")

 @Range(min = smin4, max = smax4, strict = "true")

 int getNumParallelWires();

}

The algorithm of selection of effective variants is

based on the Pareto preference rule [5]. According to this

rule, from the array of acceptable variants selected a

variant Ko, from Ko = 1, and for all j criteria a condition

show below is checking up:

Fkj < Fkoj, k = 1, 3; j = 1, 3. (3)

Variants, dissatisfying to this condition (3), are cast

aside as scienter "bad", because yield to other on all

criteria. A new variant gets out from other variants and

got an index Ko. Condition (3) is checked up again. A

process recurs until there will be not a single variant

which Ко index would not be appropriated. Remaining

variants will make the array of effective variants.

The construction of effective variants array allows

considerably to narrow a search area, but the problem of

optimal variant selection remains [9].

 At the small number of effective variants selection

of the best from them comes true on the basis of careful

analysis of every variant taking into account the

requirements of technology factors, standardization,

unification and other factors, which are not taken into

account in a model.

If the number of effective variants is great, then

often use convolving of criteria. We will use one of

convolving methods.

Let Fj* – the record value of j-criteria among

effective variants, and Fkj is a value of j-criteria in k–

variant. Then size:

j

jkj
kj

F

FF
W

*

*
 (4)

determines as far as concrete variant worse than

record one by a j-factor. We will designate the size of Wkj

for a worst variant as W*j and will execute the rate fixing

as below:

10 V. Pliuhin, M. Sukhonos, A. Petrenko, A. Ehorov

.*/
^

jkjkj WWW (5)

If to enter the gravimetric coefficients j for every

criterion, then it is possible to form the generalized

criterion [8]:

3

1

^

.min
3

1

j

kjj WF

A variant having the least value F is most near to

the record and, consequently, is the best (optimal) at set

vector of relative meaningfulness of criteria. Changing

the elements of vector in accordance with one or

another preferences, it is possible to get the different best

variants.

In the educational planning formal comparison of

three variants is executed by means of the generalized

criterion of F supposing identical meaningfulness of all

private criteria (1 = 2 = 3 = 1). Results of calculations

are added to the Table 1.

Table 1. Form for selection of optimal variant

Variant

index
W1 W2 W3 F

1

2

…

A variant having the most record indexes in a

Table 1 by one or two parameters Wi is the best for

selection. The selected variant is considered as an

optimal. Selection Java-code of the best candidate in

listing 2 is shown.

Listing 2. Selection of the best candidate by Pareto

public static int Pareto(Vector eff, int[] krit){

 int Nopt = 0;//index of optimal variant

 //vector of optimal solutions (index and selection of

Fw Pareto)

 opt_pareto = new Vector();

 int Ni = eff.size();//number of effective variants

 int Nj = krit.length;//number of gravimetric

coefficients

 //comparative values of current variant with a record

 double[][] W = new double[Ni][Nj];

 double[][] W1 = new double[Ni][Nj];//array of the

rate fixing of W

 double[] Wmax = new double[Nj];//array of worst

values of W

 double[] Fmax = new double[Nj];//array of record

indexes

 double[] Fw = new double[Ni];//generalized criterion

of optimality

 double[] Fwp = new double[Ni];//generalized criterion

of optimality in %

 for (int i = 0; i < Nj;i++){

 Fmax[i] = Double.POSITIVE_INFINITY;

 }

 //Search of record indexes

 for (int i = 0; i < Ni; ++i){

 double[] temp = new double[Nj];

 temp = (double[]) eff.get(i);

 for (int j = 0; j < Nj; ++j){

 if (temp[j] < Fmax[j]){

 Fmax[j] = temp[j];

 }

 }

 }

 //Calculation of comparative indexes

 for (int i = 0; i < Ni; ++i){

 double[] temp = new double[Nj];

 temp = (double[]) eff.get(i);

 for (int j = 0; j < Nj; ++j){

 W[i][j] = (temp[j] - Fmax[j])/Fmax[j];

 }

 }

//A search of worst value is in the array of W

//A worst value is maximal divergence with a record

 for (int i = 0; i < Nj; i++){

 Wmax[i] = W[0][i];

 }

 for (int i = 1; i < Ni; ++i){

 for (int j = 0; j < Nj; ++j){

 if (W[i][j] > W[i - 1][j]){Wmax[j] = W[i][j];}

 }

 }

//Rate fixing

 //A worst variant will have a greater value W1 and equal

to 1.0

 for (int i = 0; i < Ni; ++i){

 for (int j = 0; j < Nj; ++j){

 W1[i][j] = W[i][j]/Wmax[j];

 }

 }

 //Calculation of the generalized optimality criterion

 //The best index will have a less value Fw

 //A current index gets (diminishes) better a

gravimetric coefficient

 //Range of gravimetric coefficient:

 //from 1 (a correction is not present) to 100 (max.

correction)

 for (int i = 0; i < Ni; ++i){

 for (int j = 0; j < Nj; j++){

 Fw[i] += W1[i][j]/((double)krit[j]);

 }

 Fw[i]/=Nj;

 }

 //Selection of the best variant

 double Fpmin = Double.POSITIVE_INFINITY;

 double Fpmax = Double.NEGATIVE_INFINITY;

 for (int i = 1; i < Ni; ++i){

 if (Fw[i] < Fpmin){

 Fpmin = Fw[i];

 Nopt = i;

 }

 if (Fw[i] > Fpmax){Fpmax = Fw[i];}

 }

 //Return of resulting array Fw in %

 for (int i = 0; i < Ni; ++i){

 if (Fw[i] == Fpmin){

IMPLEMENTATION OF GENETIC ALGORITHM IN ELECTRIC MACHINES OPTIMIZATION… 11

 Fwp[i] = 100 - (Fw[i] - Fpmin)*100/Fpmax;

 }

 else{

 Fwp[i] = 100 - Fw[i]*100/Fpmax;

 }

 }

 opt_pareto.add(Fwp);//array of Pareto function Fw in %

 opt_pareto.add(Nopt);//number of optimal variant

 //Return of optimal variant index

 return Nopt;

}

So for implementation of GA using EvoJ library it is

necessary:

1) to create an interface with variables;

2) to implement the interface of fitness function;

3) to create the population of solutions and carry out

the necessary amount of iterations of GA above them,

using a code, given above.

OPTIMIZATION RESULTS

As an object of optimal design an induction electric

motor with squirrel cage rotor AIR 4 kW, 380 V, 50 Hz,

750 rpm of base industrial execution was taken (Fig. 5).

Fig. 5. Induction motor of AIR series

For design project an induction motor with squirrel

cage rotor [15–18] with an object-oriented class structure,

grounded before in was worked out [19–23]. In

accordance with a class structure was drawn up an object-

oriented UML diagram [24–28].

A project was extended by the database of insulation

materials, copper wires and nomenclature of electrical

grade steels.

Methodology of induction motor object-oriented

design was realized as a software product in IDE

NetBeans on Java, allowing to entry of data in program

windows, represented calculation results as tables and

scaled charts.

The got design results of base machine [24, 29, 30]

in next project were taken as basic data for induction

motor optimization.

As the varied parameters core length and stator core

inner diameter were chosen. As an optimality

optimization criterion maximal efficiency parameter was

set.

Results of GA implementation with maximum

efficiency parameter as an optimality criterion in a

Table 2 is shown.

As it obvious from a Table 2, efficiency is higher in

an optimal motor and other parameters not over than

permissible limits.

Table 2. Genetic algorithm: motor parameters before and after

optimization

Name
Base

value

Optimal

value

Air gap flux density, T 0.748 0.807

Stator core inner diameter D, mm 185 194

Stator core length Lδ, mm 130 115

Relative size λ = Lδ / τ (τ = πD/2p),

where p – number of pole pairs
0.895 0.755

Stator slot height, mm 21.9 14.6

Rotor slot height, mm 32.2 33.2

Width of stator slot top line, mm 7.7 7.8

Width of stator slot bottom, mm 10.2 9.3

Rotor slot upper diameter, mm 7.9 7.8

Rotor slot bottom diameter, mm 3.7 3.4

Efficiency 0.825 0.891

Power factor 0.893 0.90

Starting current ratio 5.84 6.52

Starting torque ratio 1.4 1.62

Maximum torque ration 2.65 2.88

Overall stator winding temperature,

Cel.
93.3 95.7

What kind of optimization algorithm to choose – the

designer has to decide. If importance of getting of optimal

result outweighs expenses on its receipt, then one often

ignore in course of calculation time, and it is possible to

apply the “heavy” optimization algorithm (Cartesian

product (CP) as an instance).

When it is needed to produce evaluation calculations

in the maximally compressed time, and quality of the got

results is written into a permissible error, then it is

possible to use fast-acting, but less accurate algorithms

(GA with global and single optimization criteria).

CONCLUSIONS

1. Algorithm of the previous considered CP [11] in

comparison with the GA, allows to execute multi-criterion

optimization, that is its undoubted advantage. In addition,

the CP always gives only the synonymous best variant

among the existing ones. However, in the range of

varying of two variables ± 20 % from a base value (3976

combinations) the calculation time is approached up to 48

min.

2. Implementation of CA gives stunning results. At

the same varied variables and range of their change ±

100 % from a base value, the calculation time is only

40 sec. However, GA, at least, in the present paper task,

does not allow to execute optimization for a few criteria.

3. In the GA number of the varied variables and a

range of their change is not important from the point of

view of the productivity, because a set of the varied

variables is created dynamically, but not beforehand, as in

the CP method. In addition, all combinations of the

variables and values of objective function are realized in a

binary form. However, time of the GA work is very

critical to the number of the created populations and

12 V. Pliuhin, M. Sukhonos, A. Petrenko, A. Ehorov

number of iterations in the populations.

4. The selection of population’s number and

iterations realized by an experienced way increases until

an acceptable result will not be obtained. A result of the

optimization with the use of the GA will always be the

best for the chosen criterion, but there is not a guarantee,

that a better variant can exist. The GA productivity at

effective variant populations number is determined but

not by the number and range of the varied variables.

5. When production of approximate calculations in

maximum compressed terms is needed and quality of the

obtained results is written with a permissible error, then

using of the GA optimization will be the irreplaceable

instrument for designers

REFERENCES

1. Cochehurova E.A. 2012. Teorija i metody optimizacii

[Theory and optimization methods], Tomsk: Tomsk

polytechnic institute, 2012, 157. (in Russian).

2. Goldberg D. 1989. Genetic algorithms in search,

optimization and machine learning, Boston: Addison-

Wesley, 1989, 412. (in English).

3. Poli R., Langdon W., McPhee N. A field guide to

genetic programming, http://lulu.com, 2008, 250.

(in English).

4. Copin B. 2004. Artificial intelligence illuminated,

USA, 2004, 739. (in English).

5. Reklejtis G. 1986. Optimizacija v tehnike

[Optimization in technics], Moscow, Mir, 1986, 351.

(in Russian).

6. Zablodskij N., Pliugin V., Lettl J., Buhr K.,

Khomitskiy S. 2013. Induction Motor Design by Use

of Genetic Optimization Algorithms, Prague,

Transactions on electrical engineering, 2013, No. 3,

65 – 69. (in English).

7. Emel'janov V.V. 2003. Teorija i praktika

jevoljucionnogo modelirovanija [Theory and practice

of evolution modelling], Moscow, Phizmatlit, 2003,

432. (in Russian).

8. Zablodskij N., Pliugin V., Buhr K. 2013. SAPR

elektromehanіchnih pristroїv [CAD of

electromechanical devices], Alchevsk, Lado, 2013,

Part 2, 320. (in Ukrainian).

9. Polivyanchuk A. 2016. Application of multi-criteria

analysis in evaluating the efficiency of diesel

particulate filters / ТЕKA. COMMISSION OF

MOTORIZATION AND ENERGETICS IN

AGRICULTURE. – Vol. 16, No.3, 15-20. (in

English).

10. Palis S., Leidhold R., Pliuhin V., Maslennikov A.

2015. Primenenie geneticheskogo algoritma

optimizacii v proektirovanii jelektricheskih mashin

[Using of genetic algorithm in electric machines

design], Kharkiv, NTU “KhPI”, 2015, 303 – 306. (in

Russian)

11. Zablodskij N., Pliugin V., Lettl J., Buhr K. 2013.

Induction Motor Optimal Design by Use of Cartesian

Product, Prague, Transactions on electrical

engineering, 2013. No. 2, 54 - 58. (in English).

12. Immrich W., Klavzar S., Rall D. 2008. Topics in

graph theory: graphs and their Cartesian product,

Taylor & Francis, 2008, 205. (in English).

13. Daepp U., Gorkin P. Reading, writing and proving: a

closer look at mathematics, Springer, 2011, 395. (in

English).

14. Inprise Corporation. 2002. EvoJ - Evolutionary

computations framework, Inprise Corporation,

http://evoj-frmw.appspot.com, 2002. (in English).

15. Pliuhin V. 2014. Teoreticheskie osnovy ob’ektno-

orientirovannogo rascheta i proektirovanija

jelektromehanicheskih ustrojstv [Theoretical basis of

object-oriented calculation and design of

electromechanical devices], Alchevsk, Lado, 2014,

200. (in Russian).

16. Pyrhonen J., Jokinen T., Hrabovcova V. 2013.

Design of rotating electrical machines, John Willey &

Sons, 2013, 616. (in English).

17. Pliugin V., Milykh V., Polivianchuk A.,

Zablodskij N. 2015. Using of object-oriented design

principles in mathematic modeling of electric

machines, Lublin-Rzeszow, TECA, Vol. 15, No. 2.,

2015, 25 – 32. (in English).

18. Tessarolo A. 2015. Modeling and analysis of

multiphase electric machines for high power

applications, Springer, 2015, 270. (in English).

19. Zablodskii N.N., Pliugin V.E., Petrenko A.N. 2016.

Using object-oriented design principles in electric

machines development, Kharkiv, Electrical

Engineering & Electromechanics, 2016, No. 1, 17–20.

(in English).

20. Shalloway A., Trott J. 2004. Design patterns

explained: a new perspective on object-oriented

design, Pearson education, 2004, 480. (in English).

21. Unhelkar B. 2005. Practical object oriented design,

Cengage learning Australia, 2005, 236. (in English).

22. Robinson P. 1992. Hierarchical object oriented

design, Prentice hall international (UK), 1992, 238.

(in English).

23. Gilbert S., McCarty B. 1998. Object-oriented design

in Java, Waite group press, 1998, 731. (in English).

24. Pliugin V., Shilkova L., Letl J., Buhr K., Fajtl R.

2015. Analysis of the Electromagnetic Field of

Electric Machines Based on Object-oriented Design

Principles, Prague, PIERS 2015, 2015, 2522 - 2527.

(in English).

25. Page-Jones M. 2002. Fundamentals of object-

oriented design in UML, Addison-Wesley, 2002, 288.

(in English).

26. Barclay K., Savage J. 2003. Object-oriented design

with UML and Java, Butterworth-Heinemann, 2003,

428. (in English).

27. Hunt J. 2013. The unified process for practitioners:

object oriented design, UML and Java, Springer,

2013, 281. (in English).

28. Levrik E., Havdal V. 2002. Java the UML way:

integrating object-oriented design and programming,

Willey, 2002, 754. (in English).

29. Zablodskiy N., Pliugin V. 2015. 3D magnetic field

distribution in a screw double-stator induction motor,

Lviv, CPEE 2015, 2015. 239 – 241. (in English).

30. Zablodskii N.N., Plyugin V.E., Gritsyuk V.Y.,

Grin’ G.M. 2016. Polyfunctional electromechanical

energy transformers for technological purposes,

Russian Electrical Engineering, 2016, No. 87 (3), 140.

(in English).

IMPLEMENTATION OF GENETIC ALGORITHM IN ELECTRIC MACHINES OPTIMIZATION… 13

РЕАЛИЗАЦИЯ ГЕНЕТИЧЕСКОГО АЛГОРИТМА В

ОПТИМИЗАЦИИ ЭЛЕКТРИЧЕСКИХ МАШИН С

ИСПОЛЬЗОВАНИЕМ NETBEANS IDE И JAVA.

Плюгин В.Е, Сухонос М.К., Петренко А.Н.,

Егоров А.В.

Аннотация. В данной статье выполнен

сравнительный анализ эффективности существующих

алгоритмов оптимизации. Рассмотрены основные

положения теории генетических алгоритмов.

Исследована возможность применимости

генетических алгоритмов в оптимальном

проектировании электрических машин. В качестве

метода оптимизации электрических машин

используются генетические алгоритмы, а в качестве

объектно-ориентированного языка используется язык

Java с библиотекой EvoJ, в котором переменные

класса интерфейса генетических алгоритмов задаются

динамически во время выполнения программы.

Разработано программное обеспечение с оконным

интерфейсом в среде Netbeans IDE. Приведены

результаты практической реализации классического

генетического алгоритма приоптимизации

асинхронного двигателя с короткозамкнутым

ротором.

Ключевые слова: проектирование, электрическая

машина, оптимизация, целевая функция,

генетический алгоритм, КПД, критерий, программа.

