EN
Limited germplasm and narrow genetic base in the past has hinders wider applicability of Stylosanthes in India. However, build up in Stylosanthes germplasm in recent years provided an opportunity to evaluate and use them under different agro-ecological situations preferably targeting drought tolerance. Rate reducing resistance (RRR) allo-tetraploid lines of S. scabra and diploid S. seabrana, a newly introduced species, observed well suited in hard and cracking soils under complete rainfed condition. Genotypes of S. scabra were more tolerant to drought over lines of other species as evidenced by high leaf thickness, more proline accumulation, contents of malondialdehyde (MDA), sugars, starch and chlorophyll and low carbon isotope discrimination (CID) values. Both in control and stress conditions, a positive relationship (r = 0.465 and 0.328) was observed between specific leaf area (SLA) and CID. Earlier reports have emphasized measurement of CID as an indirect way of measuring the transpiration efficiency (TE) in Stylosanthes (Thumma et al. Aust J Agr Res 49:1039–1045, 1998). The negative relationship observed between TE and CID suggested low CID bearing lines would have high TE, useful traits to select lines growing better in dry environments. Thus, selected lines having low CID provided better scope for the introduction of this important range legume for semi- arid regions of India.