PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 2 |

Tytuł artykułu

Variations in hydraulic properties of sendimentary rocks induced by fluid injection: the effect of water pressure

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Water inrush during the excavation of mines or mining is one of the great challenges in underground engineering work in China. To prevent and/or mitigate water inrush, natural sedimentary rocks with low-permeability, which include the mudstone and sandstone found in underground excavations, are exceptional materials for geological barriers. The aim of this work is to therefore investigate the hydraulic properties of sedimentary rocks in a deep tunnel, with the application of high-pressure packer tests (HPPTs). The experimental results indicate that both the mudstone and sandstone are low permeability. The measured injection pressure-flow rate (P-Q) can be divided into two phases: Phase I – a flow that is Darcian with a linear relationship, and Phase II – changes in the flow pattern with an exponential relationship. Water injection primarily triggers fracture dilation, and then results in an evident increase in hydraulic conductivity. The hydraulic conductivity versus water pressure distribution phase can be considered as three flow phases: the initial flow phase, initiation of flow communication phase, and non-steady state flow phase. The calculated original fracture apertures in mudstone and sandstone are, respectively, 0.37 and 0.33 mm. Furthermore, a conceptual model with two phases of fracture aperture versus water pressure is proposed.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

2

Opis fizyczny

p.647-655,fig.,ref.

Twórcy

autor
  • School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
  • State Key Laboratory for GeoMechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, China
autor
  • School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
autor
  • School of Resources and Environment Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, China
autor
  • School of Resources and Environment Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, China
autor
  • School of Resources and Environment Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, China

Bibliografia

  • 1. MIAO X.X., QIAN M.G. Research on the green mining of coal resources in China: current status and future prospects. J. Min. Saf. Eng. 26 (1), 1, 2009.
  • 2. MA D., REZANIA M., YU H.S., BAI H.B. Variations of hydraulic properties of granular sandstones during water inrush: Effect of small particle migration. Eng. Geol. 217, 61, 2017.
  • 3. MENG Z.P., LI G.Q., XIE X.T. A geological assessment method of floor water inrush and its application. Eng. Geol. 143-144, 51, 2012.
  • 4. HUANG Z., JIANG Z.Q., ZHU S.Y., QIAN Z.W., CAO D.T. Characterizing the hydraulic conductivity of rock formations between deep coal and aquifers using injection tests. Int. J. Rock. Mech. Min. Sci. 71, 12, 2014.
  • 5. WANG T.T., ZHAN S.S., CHEN C.H., SU W.C. Characterizing fractures to mitigate inrush of water into a shaft using hydrogeological approaches. Tunn. Undergr. Sp. Tech. 61, 205, 2017.
  • 6. BUKOWSKI P. Water hazard assessment in active shafts in upper Silesian coal basin mines. Mine. Water. Environ. 30, 302, 2011.
  • 7. ZAREI H.R., UROMEIHY A., SHARIFZADEH M. Evaluation of high local groundwater inflow to a rock tunnel by characterization of geological features. Tunn. Undergr. Sp. Tech. 26, 364, 2011.
  • 8. Hödl R., Höllrigl M. Pummersdorfer Tunnel-water conditions in the shallow tunnel. Geomech. Tunnel. 7 (6), 664, 2014.
  • 9. LI L., LEI T., LI S., ZHANG Q., XU Z., SHI S., ZHOU Z. Risk assessment of water inrush in karst tunnels and software development. Arab. J. Geosci. 8, 1843, 2014.
  • 10. LI S.C., ZHOU Z.Q., LI L.P., LIN P., XU Z.H., SHI S.S. A new quantitative method for risk assessment of geological disasters in underground engineering: Attribute Interval Evaluation Theory (AIET). Tunn. Undergr. Sp. Tech. 53, 128, 2016.
  • 11. FARHADIAN H., KATIBEH H., HUGGENBERGER P. Empirical model for estimating groundwater flow into tunnel in discontinuous rock masses. Environ. Earth. Sci. 75 (6), 1, 2016.
  • 12. WANG Y., YIN X., GENG F., JING H., SU H., LIU R. Risk Assessment of Water Inrush in Karst Tunnels Based on the Effcacy Coeffcient Method. Pol. J. Stud. 26 (4), 1765, 2017.
  • 13. WANG Y., MENG F., GENG F., JING H., ZHAO N. Investigating Water Permeation through the soil-rock Mixture in Underground Engineering. Pol. J. Stud. 26 (4), 1777, 2017.
  • 14. ZHU W.C., WEI C.H. Numerical simulation on mining-induced water inrushes related to geologic structures using a damage-based hydromechanical model. Environ. Earth. Sci. 62, 43, 2011.
  • 15. LI L.P., TU W.F., SHI S.S., CHEN J.X., ZHANG Y.H. Mechanism of water inrush in tunnel construction in karst area. Geomat. Nat. Haz. Risk. 7 (S1), 35, 2016.
  • 16. WANG Y., YANG W., LI M., LIU X. Risk assessment of floor water inrush in coal mines based on secondary fuzzy comprehensive evaluation. Int. J. Rock. Mech. Min. Sci. 52 (6), 50, 2012.
  • 17. BAI H.B., MA D., CHEN Z.Q. Mechanical behavior of groundwater seepage in karst collapse pillars. Eng. Geol. 164, 101, 2013.
  • 18. MA D., BAI H.B., CHEN Z.Q., PU H. Effect of Particle Mixture on Seepage Properties of Crushed Mudstones. Transp. Porous. Media. 108 (2), 257, 2015.
  • 19. ANGULO B., MORALES T., URIARTE I.A. Hydraulic conductivity characterization of a karst recharge area using water injection test and electrical resistivity logging. Eng. Geol. 117, 90, 2011.
  • 20. HUANG Z., JIANG Z.Q., ZHU S.Y., WU X.S., YANG L.N., GUANG Y.Z. Influence of structure and water pressure on the hydraulic conductivity of the rock mass around underground excavations. Eng. Geol. 202, 74, 2016.
  • 21. MENG Z.P., SHI X.C., LI G.Q. Deformation, failure and permeability of coal-bearing strata during longwall mining. Eng. Geol. 208, 69, 2016.
  • 22. XIE H.P., GAO F., JU Y. Research and development of rock mechanics in deep ground engineering. Chin. J. Rock. Mech. Eng. 34 (11), 2161, 2015.
  • 23. NEUMAN S.P. Trends, prospects and challenges in quantifying flow and transport through fractured rocks. Hydrogel. J. 13 (1), 124, 2005.
  • 24. HAMM S.Y., KIM M., CHENG J.Y., KIM J.Y., SON M., KIIM T.W. Relationship between hydraulic conductivity and fracture properties estimated from packer test and borehole data in a fracture granite. Eng. Geol. 92 (1), 73, 2007.
  • 25. CHEN Y.F., HU S.H., HU R., ZHOU C.B. Estimating hydraulic conductivity of fractured rocks from high-pressure packer tests with Izbbash’s law-based empirical model. Water. Resour. Res. 51, 2096, 2015.
  • 26. GUGLIELMI Y., CAPPA F., LANCON H., JANOWCZYK J.B., RUTQVIST J., TSANG C. F., WANG J.S.Y. ISRM suggested method for step-rate injection method for fracture in-situ properties (SIMFIP): using a 3-components borehole deformation sensor. Rock. Mech. Rock. Eng. 47, 303, 2014.
  • 27. DERODE B., CAPPA F., GUGLIELMI Y., RUTQVIST J. Coupled seismo-hydromechanical monitoring of inelastic effects on injection-induced fracture permeability. Int. J. Rock. Mech. Min. Sci. 61 (10), 266, 2015.
  • 28. LE BORGNE T., BOUR O., PAILLE F.L., CAUDAL J. P. Assessment of preferential flow path connectivity and hydraulic properties at single-borehole and cross-borehole scales in a fractured aquifer. J. Hydrol. 328, 347, 2006.
  • 29. DERODE B., CAPPA F., GUGLIELMI Y., RUTQVIST J. Coupled seismo-hydromechanical monitoring of inelastic effects on injection-induced fracture permeability. Int. J. Rock. Mech. Min. Sci. 61 (10), 266, 2013.
  • 30. CHEN Y.F., LIU M.M., HU S.H., ZHOU C.B. Non-Darcy's law-based analytical models for data interpretation of high-pressure packer tests in fractured rocks. Eng. Geol. 199, 91, 2015.
  • 31. ZHANG X.M., JIANG Z.M., FENG S.R., CHENG S.D. Study on the determination of permeability coefficient of fractured rock mass under pressure test condition. J. Hydroelectric. Eng., 30 (1), 155, 2011.
  • 32. LIANG D.X., JIANG Z.Q., GUAN Y.Z. Field Research: Measuring Water Pressure Resistance in a Fault-Induced Fracture Zone. Mine Water Environ. 34 (3), 320, 2015.
  • 33. HUANG Z., JIANG Z., TANG X., WU X., GUO D., YUE Z. In situ Measurement of Hydraulic Properties of the Fractured Zone of Coal Mines. Rock Mech. Rock Eng. 49 (2), 603, 2016.
  • 34. WANG H.L., XU W.Y., SHAO J.F., SKOCZYLAS F. The gas permeability properties of low-permeability rock in the process of triaxial compression test. Mater. Lett. 116, 386, 2014.
  • 35. QUINN P.M., PARKER B.L., CHERRY J.A. Using constant head step tests to determine hydraulic apertures in fractured rock. J. Contam. Hydrol. 126 (1), 85, 2011.
  • 36. QUINN P.M., CHEERY J.A., PARKER B.L. Quantification of non-Darcian flow observed during packer testing in fractured sedimentary rock. Water. Resour. Res. 47 (9), 178, 2011.
  • 37. RUTQVIST J. Fractured rock stress-permeability relationships form in situ data and effects of temperature and chemical-mechanical couplings. Geofluids, 15 (1-2), 48, 2014.
  • 38. RANJITH P.G., VIETE D.R. Applicability of the ‘cubic law’ for non-Darcian fracture flow. J. Petrol. Sci. Eng. 78, 321, 2011.
  • 39. JIANG Z.M., FU S., LI S.G., HU D.K., FENG S.R. High pressure permeability test on hydraulic tunnel with steep obliquity faults under high pressure. Chin. J. Rock. Mech. Eng. 26 (11), 2318, 2007.
  • 40. HUANG Z., JIANG Z.Q., SU Q., CAO D.T., WANG Y.J., ZHANG D. High-pressure water injection tests on permeability of deep rock mass under tunnels. Chin. J. Geotech. Eng. 36 (8), 1535, 2014.
  • 41. HUANG Z., JIANG Z., FU J., CAO D. Experimental measurement on the hydraulic conductivity of deep low-permeability rock. Arab. J. Geosci. 8, 5389, 2015.
  • 42. OLSSON R., BARTON N. An improved model for hydromechanical coupling during shearing of rock joints. Int. J. Rock. Mech. Min. Sci. 38, 317, 2011.
  • 43. OSIPTSOV A.A. Fluid Mechanics of Hydraulic Fracturing: a Review. J. Petrol. Sci. Eng. 156, 513, 2017.
  • 44. BLUNSCHI J., ERTEKIN T., WANG J. Hydraulic fracturing mechanisms in coal: a review. Int. J. Oil Gas Coal Tech. 14 (3), 247, 2017.
  • 45. SUPPACHOKNIRUN T., TUTUNCUN A.N. Hydraulic Fracturing and Production Optimization in Eagle Ford Shale Using Coupled Geomechanics and Fluid Flow Model. Rock Mech. Rock Eng. 50 (12), 3361, 2017.
  • 46. SOULEY M., LOPEZ P., BOULON M., THORAVAL A. Experimental hydromechanical characterization and numerical modelling of a fractured and porous sandstone. Rock. Mech. Rock. Eng. 48 (3), 1143, 2015.
  • 47. MAO R.B., FENG Z.J., LIU Z.H., ZHAO Y.S. Laboratory hydraulic fracturing test on large-scale pre-cracked granite specimens. J. Nat. Gas Sci. Eng. 44, 278, 2017.
  • 48. TAN P., JIN Y., HAN K., HOU B., CHEN M., GUO X.F., GAO J. Analysis of hydraulic fracture initiation and vertical propagation behavior in laminated shale formation[J]. Fuel, 206, 482, 2017.
  • 49. LIANOS E.M., JEFFREY R.G., HILLIS R., ZHANG X. Hyaraulic fracture propagation through an orthogonal discontinuty: a laboratory, analytical and numerical study. Rock Mech. Rock Eng. 50 (8), 2101, 2017.
  • 50. WANG W., TALEGHANI A.D. Impact of hydraulic fracturing on cement sheath integrity; A modelling approach. J. Nat. Gas Sci. Eng. 44, 265, 2017.
  • 51. WANG L., CARDENAS M.B., SLOTTKE D.T., KETCHAM R.A., SHARP JR J.M. Modification of the local cubic law of fracture flow for weak inertia, tortuosity, and roughness. Water. Resour. Res. 51, 2064, 2015.
  • 52. JAMISON W., AZAD A. The hydraulic fracture-natural fracture network configuration in shale reservoirs: Geoligical limiting factors. J. Petrol. Sci. Eng. 159, 205, 2017.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-37c10afc-79f0-42ca-b9ab-654e0a3d1e1d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.