PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 1 |

Tytuł artykułu

Characteristics of kitchen waste and the formation of floating brown particles (FBP) in the anaerobic digestion process

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Five types of kitchen waste (KW) from China – including hop pot (HP), fast food (FF), Hebei cuisine (HC), university canteen (UC), and other mixed KW (Other) – were investigated as feedstock for potential biogas and methane production. The biodegradability of KW was measured using batch anaerobic digestion (AD) tests and feedstock at an inoculum ratio (F/I) of 0.5. Gompertz and Cone models were used to determine the kinetic parameters of KW degradation, biogas, and methane production. Results showed that HP had the highest lag phase time of 5.46 days. Methane production varies with different sources of KW. HP had the highest methane yield of 363.9 mL/g-VSadded as compared to a sample of FF (334.8 mL/g-VSadded), other ( 278.5 mL/g-VSadded), UC (239.2 mL/g-VSadded), and HC (236.0 mL/g-VSadded). The biodegradability of KW ranged from 39.5% to 50.4%. During the AD process a certain amount of floating brown particles (FBP) were formed, which may be the main inhibiting factor of methane production. Analysis of ¹³C NMR and FTIR revealed that the main component of FBP was calcium stearate. The formation mechanism of calcium stearate may contribute to the relatively high lipid content (18.6% to 30.9%) of the KW sample, which subsequently resulted in over-accumulation of long-chain fatty acids (LCFAs) and reaction with Ca²⁺. Using lipid-rich substrates as feedstock may be an efficient approach to adding Ca²⁺ artificially for reducing the inhibition of LCFAs.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

1

Opis fizyczny

p.155-161,fig.,ref.

Twórcy

autor
  • Institute of New Energy, State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum Beijing (CUPB), Beijing, P. R. China, 102249
autor
  • Institute of New Energy, State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum Beijing (CUPB), Beijing, P. R. China, 102249
autor
  • Institute of New Energy, State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum Beijing (CUPB), Beijing, P. R. China, 102249
  • Beijing Jeegreen Technology Development Co., Ltd., Beijing, P. R. China, 102200
autor
  • Institute of New Energy, State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum Beijing (CUPB), Beijing, P. R. China, 102249
autor
  • Institute of New Energy, State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum Beijing (CUPB), Beijing, P. R. China, 102249
  • Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang, P. R. China, 330200
autor
  • Institute of New Energy, State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum Beijing (CUPB), Beijing, P. R. China, 102249
autor
  • Institute of New Energy, State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum Beijing (CUPB), Beijing, P. R. China, 102249
  • Faculty of Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
autor
  • Institute of New Energy, State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum Beijing (CUPB), Beijing, P. R. China, 102249
autor
  • Institute of New Energy, State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum Beijing (CUPB), Beijing, P. R. China, 102249

Bibliografia

  • 1. ZHANG C., SU H., BAEYENS J., TAN T. Reviewing the anaerobic digestion of food waste for biogas production. Renew. Sust. Energ. Rev. 38, 383, 2014.
  • 2. LIU G., LIU X., LI Y., HE Y., ZHANG R. Influence of pH adjustment and inoculum on anaerobic digestion of kitchen waste for biogas producing. J. Biobased Mater. Bio. 5 (3), 390, 2011.
  • 3. GIROTTO F., ALIBARDI L., COSSU R. Food waste generation and industrial uses: A review. Waste Manage. 45, 32, 2015.
  • 4. ZHANG R., EL-MASHAD H.M., HARTMAN K., WANG F., LIU G., CHOATE C., GAMBLE P. Characterization of food waste as feedstock for anaerobic digestion. Bioresour. Technol. 98 (4), 929, 2017.
  • 5. LI Y., ZHANG R., LIU G., CHEN C., HE Y., LIU X. Comparison of methane production potential, biodegradability, and kinetics of different organic substrates. Bioresour. Technol. 149, 565, 2013.
  • 6. PEREIRA M.A., SOUSA D.Z., MOTA M., ALVES M.M. Mineralization of LCFA associated with anaerobic sludge: kinetics, enhancement of methanogenic activity, and effect of VFA. Biotechnol. Bioeng. 88 (4), 502, 2014.
  • 7. CIRNE D.G., PALOUMET X., BJORNSSON L., ALVES M.M., MATTIASSON B. Anaerobic digestion of lipid-rich waste-effects of lipid concentration. Renew. Energ. 32 (6), 965 , 2017.
  • 8. WAGNER U., MAURER M., RUCKERT C. Abschlussbericht zum Vorhaben Biogasanlage Flugplatz Köthen: Vergärung von Hühnertrockenkot Gut Mennewitz GmbH. 2010.
  • 9. NIE H., JACOBI H.F., STRACH K., XU C., ZHOU H., LIEBETRAU J. Mono-fermentation of chicken manure: Ammonia inhibition and recirculation of the digestate. Bioresour. Technol. 178, 238, 2015.
  • 10. TANAKA S., KOBAYASHI T., KAMIYAMA K.I., BILDAN M. Effects of thermochemical pretreatment on the anaerobic digestion of waste activated sludge. Water Sci. Technol. 35 (8), 209, 1997.
  • 11. LI Y., LIU H., SU D.F., YAN F. Characterization and thermophilic anaerobic digestion of organic fraction of municipal solid waste. Waste Biomass Valor. 7, 325, 2016.
  • 12. APHA. Standard Methods for the Examination of Water and Wastewater, 18th ed American Public Health Association, DC, USA, 1998.
  • 13. LI Y., ZHANG R., HE Y., LIU X., CHEN C., LIU G. Thermophilic solid-state anaerobic digestion of alkalinepretreated corn stover. Energ. Fuel. 28 (6), 3759, 2014.
  • 14. NELSON R. Methane generation from anaerobic digesters: considering different substrates Environmental Biotechnology,-Iowa State University, USA, 2010.
  • 15. LI Y., ZHANG R., CHEN C., LIU G., HE Y., LIU X. Biogas production from co-digestion of corn stover and chicken manure under anaerobic wet, hemi-solid, and solid state conditions. Bioresour. Technol. 149, 406, 2013.
  • 16. ZHANG C., SU H., TAN T. Batch and semi-continuous anaerobic digestion of food waste in a dual solid–liquid system. Bioresour. Technol. 145, 10 , 2013.
  • 17. ZHANG C., SU H., WANG Z., TAN T., QIN P. Biogas by semi-continuous anaerobic digestion of food waste. Appl. Biochem. biotech. 175 (8), 3901, 2015.
  • 18. YIRONG C., HEAVEN S., BANKS C.J. Effect of a trace element addition strategy on volatile fatty acid accumulation in thermophilic anaerobic digestion of food waste. Waste Biomass Valor. 6 (1), 1, 2015.
  • 19. ZHANG W., ZHANG L., LI A. Enhanced anaerobic digestion of food waste by trace metal elements supplementation and reduced metals dosage by green chelating agent [S, S]-EDDS via improving metals bioavailability. Water Res. 84, 266, 2015.
  • 20. ZHU B., GIKAS P., ZHANG R., LO J., JENKINS B., LI X. Characteristics and biogas production potential of municipal solid wastes pretreated with a rotary drum reactor. Bioresour Technol 100 (3), 1122, 2009.
  • 21. BOZYM M., FLORCZAK I., ZDANOWSKA P., WOJDALSKI J., KLIMKIEWICZ M. An analysis of metal concentrations in food wastes for biogas production. Renew. Energ. 77, 467, 2015.
  • 22. MENG Y., LI S., YUAN H., ZOU D., LIU Y., ZHU B., LI X. Evaluating biomethane production from anaerobic mono-and co-digestion of food waste and floatable oil (FO) skimmed from food waste. Bioresour. Technol. 185, 7, 2015.
  • 23. QIAO W., MOHAMMAD S., TAKAYANAGI K., LI Y.Y. Thermophilic anaerobic co-digestion of coffee grounds and excess sludge: long term process stability and energy production. RSC Adv. 5 (34), 26452 , 2015.
  • 24. LIU Y., CHEN X., ZHU B., YUAN H., ZHOU Q., XIA Y., LI X. Formation and function of calcium stearate in anaerobic digestion of food waste. Chinese J. Environ. Eng. 5, 2844, 2011.
  • 25. PITK P., PALATSI J., KAPARAJU P., FERNANDEZ B., VILU R. Mesophilic co-digestion of dairy manure and lipid rich solid slaughterhouse wastes: Process efficiency, limitations and floating granules formation. Bioresour. Technol. 166, 168, 2014.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-374d2eda-ac16-417d-9704-cb20de769eaa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.