PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 08 |

Tytuł artykułu

DNA methylation alterations of upland cotton (Gossypium hirsutum) in response to cold stress

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
DNA methylation plays an important role in regulating gene expression in plants. In the experiment, we studied effects of cold on DNA methylation variation in upland cotton. Using the methylation-sensitive amplified polymorphism procedure, we chose 66 pairs of selective amplification primers to assess the status and levels of cytosine methylation. The hemimethylation of the external cytosine and the full methylation of the internal cytosine were scored. As a result, cold triggered the demethylation of hemimethylated or internally full methylated cytosine. With the prolongation of cold treatment, the demethylation loci increased and the methylation loci decreased. Nevertheless, this change could be reverted when cotton was subsequently recovered under normal temperature. In addition, 29 polymorphic bands that appeared in the electrophoretogram were sequenced. By homologous alignment analysis, most of these 29 fragments were identified as genes or DNA clones involved in abiotic stress response. The variation in methylation loci existed at both coding and non-coding regions. Furthermore, the expression of the abiotic stressrelated genes, GhCLSD (Seq21), GhARK (Seq22), GhARM (Seq15, Seq18, Seq19 and Seq21) and GhTPS (Seq8), were tested. The results revealed that cold treatment induced down-regulation of GhCLSD, GhARK and GhARM, but upregulated the expression of GhTPS. These changes were in accordance with the alteration of DNA methylation. Thus, cold may affect the gene expression via changing the methylation status in the cytosine nucleotide.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

35

Numer

08

Opis fizyczny

p.2445-2453,fig.,ref.

Twórcy

autor
  • Department of Life Sciences, Anhui Agricultural University, Hefei 230036, People’s Republic of China
autor
  • Department of Life Sciences, Anhui Agricultural University, Hefei 230036, People’s Republic of China
autor
  • Department of Life Sciences, Anhui Agricultural University, Hefei 230036, People’s Republic of China
autor
  • Department of Life Sciences, Anhui Agricultural University, Hefei 230036, People’s Republic of China
autor
  • Department of Life Sciences, Anhui Agricultural University, Hefei 230036, People’s Republic of China
autor
  • Department of Life Sciences, Anhui Agricultural University, Hefei 230036, People’s Republic of China
autor
  • Department of Life Sciences, Anhui Agricultural University, Hefei 230036, People’s Republic of China

Bibliografia

  • Baranek M, Krizan B, Ondrusikova E, Pidra M (2010) DNAmethylation changes in grapevine somaclones following in vitro cultures and thermotherapy. Plant Cell Tiss Organ Cult 101(1):11–22. doi:10.1007/s11240-009-9656-1
  • Bassam BJ, Caetano-Anolles G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196(1):80–83
  • Chen L, Zhang Y, Ren Y, Xu J, Zhang Z, Wang Y (2012) Genomewide identification of cold-responsive and new microRNAs in Populus tomentosa by high-throughput sequencing. Biochem Biophys Res Commun 417(2):892–896. doi:10.1016/j.bbrc.2011.12.070
  • Chinnusamy V, Zhu JH, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12(10):444–451. doi: 10.1016/j.tplants.2007.07.002
  • Da K, Nowak J, Flinn B (2012) Potato cytosine methylation and gene expression changes induced by a beneficial bacterial endophyte, Burkholderia phytofirmans strain PsJN. Plant Physiol Biochem 50(1):24–34. doi:10.1016/j.plaphy.2011.09.013
  • Dong CH, Zolman BK, Bartel B, Lee BH, Stevenson B, Agarwal M, Zhu JK (2009) Disruption of arabidopsis CHY1 reveals an important role of metabolic status in plant cold stress signaling. Mol plant 2(1):59–72. doi:10.1093/mp/ssn063
  • Fernandez O, Bethencourt L, Quero A, Sangwan RS, Clement C (2010) Trehalose and plant stress responses: friend or foe? Trends Plant Sci 15(7):409–417. doi:10.1016/j.tplants.2010.04.004
  • Gong SY, Huang GQ, Sun X, Li P, Zhao LL, Zhang DJ, Li XB (2012) GhAGP31, a cotton non-classical arabinogalactan protein, is involved in response to cold stress during early seedling development. Plant Biol (Stuttg) 14(3):447–457. doi:10.1111/j.1438-8677.2011.00518.x
  • Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo ZF (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39(2):969–987. doi:10.1007/s11033-011-0823-1
  • Jaligot E, Beule T, Baurens FC, Billotte N, Rival A (2004) Search for methylation-sensitive amplification polymorphismsassociated with the ‘‘mantled’’ variant phenotype in oil palm (Elaeis guineensis Jacq.). Genome 47(1):224–228. doi:10.1139/G03-085
  • Kumar M, Bijo AJ, Baghel RS, Reddy CR, Jha B (2012) Selenium and spermine alleviate cadmium induced toxicity in the red seaweed Gracilaria dura by regulating antioxidants and DNA methylation. Plant Physiol Biochem 51:129–138. doi:10.1016/j.plaphy.2011.10.016
  • Li M, Xiong G, Li R, Cui J, Tang D, Zhang B, Pauly M, Cheng Z, Zhou Y (2009) Rice cellulose synthase-like D4 is essential for normal cell-wall biosynthesis and plant growth. Plant J 60(6):1055–1069. doi:10.1111/j.1365-313X.2009.04022.x
  • Li HW, Zang BS, Deng XW, Wang XP (2011) Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta 234(5):1007–1018. doi:10.1007/s00425-011-1458-0
  • Medina J, Catala R, Salinas J (2011) The CBFs: three arabidopsis transcription factors to cold acclimate. Plant Sci 180(1):3–11.doi:10.1016/j.plantsci.2010.06.019
  • Murray HG, Thompson WF (1980) Rapid isolation of high molecular weight DNA. Nucleic Acids Res 8(19):4321–4325
  • Nakamura T, Ishikawa M, Nakatani H, Oda A (2008) Characterization of cold-responsive extracellular chitinase in bromegrass cell cultures and its relationship to antifreeze activity. Plant Physiol 147(1):391–401. doi:10.1104/pp.106.081497
  • Pan YJ, Wang WS, Zhao XQ, Zhu LH, Fu BY, Li ZK (2011) DNA methylation alterations of rice in response to cold stress. Plant Omics J 4(7):364–369
  • Ramalingam J, Pathan MS, Feril O, Miftahudin Ross K, Ma XF, Mahmoud AA, Layton J, Milla R, Chikmawati T, Valliyodan B, Skinner R, Matthews DE, Gustafson JP, Nguyen HT (2006) Structural and functional analyses of the wheat genomes based on expressed sequence tags (ESTs) related to abiotic stresses. Genome 49(10):1324–1340. doi:10.1139/g06-094
  • Reyna-Lopez GE, Simpson J, Ruiz-Herrera J (1997) Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphism. Mol Gen Genet 253:703–710
  • Sakthivel K, Girishkumar K, Ramkumar G, Shenoy VV, Kajjidoni ST, Salimath PM (2010) Alterations in inheritance pattern and level of cytosine DNA methylation, and their relationship with heterosis in rice. Euphytica 175:303–314. doi:10.1007/s10681-010-0167-2
  • Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9:465–476. doi:10.1038/nrg2341
  • Tan MP (2010) Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism. Plant Physiol Bioch 48(1):21–26. doi:10.1016/j.plaphy.2009.10.005
  • Thakur P, Kumar S, Malik JA, Berger JD, Nayyar H (2010) Cold stress effects on reproductive development in grain crops: an overview. Environ Exp Bot 67(3):429–443. doi:10.1016/j.envexpbot.2009.09.004
  • Wang W, Zhao X, Pan Y, Zhu L, Li Z (2011) DNA methylation changes detected by methylation-sensitive amplified polymorphism in two contrasting rice genotypes under salt stress. J Genet Genomics 38(9):419–424. doi:10.1016/j.jgg.2011.07.006
  • Wang F, Hou X, Tang J, Wang Z, Wang S, Jiang F, Li Y (2012a) A novel cold-inducible gene from Pak-choi (Brassica campestris ssp. chinensis), BcWRKY46, enhances the cold, salt and dehydration stress tolerance in transgenic tobacco. Mol Biol Rep 39(4):4553–4564. doi:10.1007/s11033-011-1245-9
  • Wang Y, Jiang CJ, Li YY, Wei CL, Deng WW (2012b) CsICE1 and CsCBF1: two transcription factors involved in cold responses in Camellia sinensis. Plant Cell Rep 31(1):27–34. doi:10.1007/s00299-1136-5
  • Yang A, Dai XY, Zhang WH (2012) A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot 63(7):2541–2556. doi:10.1093/jxb/err431
  • Zhang YH, Primavesi LF, Jhurreea D, Andralojc PJ, Mitchell RAC, Powers SJ, Schluepmann H, Delatte T, Wingler A, Paul MJ (2009) Inhibition of SNF1-related protein kinase1 activity and regulation of metabolic pathways by trehalose-6-phosphate. Plant Physiol 149(4):1860–1871.doi:10.1104/pp.108.133934
  • Zhen Y, Dhakal P, Ungerer MC (2011) Fitness benefits and costs of cold acclimation in Arabidopsis thaliana. Am Nat 178(1):44–52. doi:10.1086/660282
  • Zhu B, Chen TH, Li PH (1995) Expression of three osmotin-like protein genes in response to osmotic stress and fungal infection in potato. Plant Mol Biol 28(2):17–26
  • Zhu JH, Lee BH, Dellinger M, Cui XP, Zhang CQ, Wu S, Nothnagel EA, Zhu JK (2010) A cellulose synthase-like protein is required for osmotic stress tolerance in Arabidopsis. Plant J 63(1):128–140. doi:10.1111/j.1365-313X.2010.04227.x

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3745f012-b2ae-412b-b589-298c1d5a23bb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.