Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 16 | 2 |
Tytuł artykułu

Effect of nutrient deprivation stress on seedlings morphology and ROS formation in selected RILs of rye (Secale cereale L.)

Treść / Zawartość
Warianty tytułu
Języki publikacji
Opis fizyczny
  • Department of Plant Genetics, Breeding and Biotechnology, West Pomeranian University of Technology in Szczecin, Slowackiego St. 17, 71-434 Szczecin, Poland
  • Division of Hydrobiology, Ichthyology and Biotechnology of Breeding, West Pomeranian University of Technology in Szczecin, Slowackiego St. 17, 71-434 Szczecin, Poland
  • Division of Hydrobiology, Ichthyology and Biotechnology of Breeding, West Pomeranian University of Technology in Szczecin, Slowackiego St. 17, 71-434 Szczecin, Poland
  • 1. Anandacoomaraswamy A., De Costa W.A.J.M., Tennakoon1 P.L.K., Van Der Werf A. 2002. The physiological basis of increased biomass partitioning to roots upon nitrogen deprivation in young clonal tea (Camellia sinensis (L.) O. Kuntz).Plant and Soil238: 1-9.
  • 2. Ashraf M., Harris P.J.C. 2005. Abiotic stresses plant resistance through breeding and molecular approaches. New York, Food Products Press, 1–725.
  • 3. Bolanõs J., Edmeades G.O., Martinez L. 1993. Eight cycles of selection for drought tolerance in lowland tropical maize. III. Responses in drought-adaptive physiological and morphological traits. Field Crops Research 31: 269–286.
  • 4. Brouwer, R., 1963. Some aspects of the equilibrium between overground and underground plant parts. Meded. Inst. Biol. Scheikd. Onderzoek Landbouwgewassen 213: 31-39.
  • 5. Bürün B., Poyrazoğlu E.Ç. 2002. Embryo culture in barley (Hordeum vulgare L.). Turkish Journal of Botany 26: 175-180.
  • 6. Bruce W.B., Edmeades G.O., Barker T.C. 2002. Molecular and physiological approaches to maize improvement for drought tolerance. J Exp Bot 53: 13–25.
  • 7. Cakmak I., Ekiz H., Yilmaz A., Torun B., Koleli N., Gultekin I., Alkan A., Eker S. 1997. Differential response of rye, triticale, bread wheat and durum wheats to zinc deficiency in calcareous soils. Plant Soil 188: 1-10.
  • 8. Cash T.P., Pan Y., Simon M.C. 2007. Reactive oxygen species and cellular oxygen sensing. Free Radical Biology & Medicine 43: 1219–1225
  • 9. Chun L., Mi G.H., Li J.S., Chen F.J., Zhang F.S. 2005. Genetic analysis of maize root characteristics in response to low nitrogen stress. Plant and Soil 276: 369–382.
  • 10. Gill S.S., Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48(12): 909-930.
  • 11. Górny A.G. 1993. Differences in root and shoot response to limited N-supply in oat and spring barley. Journal of Agronomy Crop Sciences 171: 161-167.
  • 12. Górny A.G., Szołkowska A. 1996. Effects of selection for more vigorous seminal roots in two cross populations of oat (Avena sativa L.). Journal of Applied Genetics 37(4): 331-344.
  • 13. Guo Y., Mi G.H., Chen F., Zhang F. 2005. Effect of NO3- supply on lateral root growth in maize plants. Journal of Plant Physiology Molecular Biology 31:90-96.
  • 14. Hernandez M., Fernandez-Garcia N., Garcia-Garma J., Rubio-Asensio J.S., Rubio F., Olmos E. 2012. Potassium starvation induces oxidative stress in Solanum lycopersicum L. roots. Journal of Plant Physiology 169 (2012) 1366– 1374
  • 15. Høgh-Jensen H., Pedersen M.B. 2003. Morphological plasticity by crop plants and their potassium use efficiency. Journal of Plant Nutrition 26: 969–984.
  • 16. Kell DB. 2011. Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration. Annals of Botany doi:10.1093/aob/mcq144, available online at
  • 17. Kreslavski V.D., Los D.A., Allakhverdiev S.I. Kuznetsov Vl.V. 2012. Signaling Role of Reactive Oxygen Species in Plants under Stress. Russian Journal of Plant Physiology 59(2): 141–154.
  • 18. Lambers H., Poorter H. 1992. Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Advances in Ecological Research23: 187-261.
  • 19. Liszkay A., Van Der Zalm E., Schopfer P. 2004. Production of reactive oxygen intermediates (O2-, H2O2, and .OH) by maize roots and their role in wall loosening and elongation growth. Plant Physiology136: 3114–3123.
  • 20. Liu J., Li J., Chen F., Zhang F., Ren T., Zhuang Z., Mi G. 2008. Mapping QTLs for root traits under nitrate levels at the seedling stage in maize (Zea mays L.) Plant Soil 305: 253-265.
  • 21. Manschadi A.M., Hammer G.L., Christopher J.T., de Voil P. 2008. Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.). Plant Soil 303: 115–129.
  • 22. Messmer M. Hildermann I. Thorup-Kristensen K., Rengel Z. 2011. Organic crop breeding: Nutrient management in organic farming and consequences for direct and indirect selection strategies, Organic crop breeding. Lammerts van Bueren ET, Myers JR (eds), Blackwell & Wiley: 21-27.
  • 23. Mi G.H., Chen F.J., Zhang F.S. 2007. Physiological and genetic mechanisms for nitrogen use efficiency in maize. Journal of Crop Science and Biotechnology 10: 57-63.
  • 24. Murashige T., Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue clusters. Physiologia Plantarum 15: 473–497.
  • 25. Paponov I.A., Lebedinskai S., Koshkin E.I. 1999. Growth analysis of solution culture-grown winter rye, wheat and triticale at different relative rates of nitrogen supply. Annals of Botany 84: 467-473.
  • 26. Poorter H., Niklas K.J., Reich P.B., Oleksyn J., Poot P., Mommer L. 2011. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist 193: 30–50.
  • 27. Rakoczy-Trojanowska M., Malepszy S. 1995. Genetic factors influencing regeneration ability in rye (Secale cereale L.). II. Immature embryos. Euphytica 83: 233–239.
  • 28. Reynolds H.L., Antonio C.D. 1996. The ecological significance of plasticity in root weight ratio in response to nitrogen: opinion. Plant and Soil 185: 75-97.
  • 29. Rodríguez-Serrano M.R., Romero-Puertas M.C., Pazmińo D.M., Testillano P.S., Risueńo M.C., del Río L.A., Sandalio L.M. 2009. Cellular Response of pea plants to cadmium toxicity: Cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiology 150: 229–243.Rzepka-Plevneš D. 1999. Variability of tolerance to nitrogen and potassium deficiencies in original (S0) and selected (S1 – S2) rye populations, assessed during in vitro cultures. Plant Breed Seed Sci. 43(1): 47–63.
  • 30. Rzepka-Plevneš D., Kulpa D. 1999. Agronomic properties of rye populations selected for tolerance to nutrition deficiency under laboratory conditions (in Polish). BiulIHAR 211: 259–265.
  • 31. Rzepka-Plevneš D., Marciniak H., Œmiech M. 1997. The evaluation of rye (S. cereale L.) inbred lines tolerance to nutrition deficiency by in vitro test (in Polish). Biul. IHAR 203: 137–146.
  • 32. Sandalio L.M., Rodriguez-Serrano M., Romero-Puertas M.C., del Rio L.A. 2008. Imaging of reactive oxygen species and nitric oxide in vivo in plant tissues. Methods in Enzymology, 440 DOI: 10.1016/S0076-6879(07)00825-7
  • 33. Shin R., Berg R.H., Schachtman D.P. 2005. Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiology 46(8): 1350–1357.
  • 34. Shin R., Schachtman D.P. 2004. Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proceedings of the National Academy of Sciences101: 8827–8832.
  • 35. Silva I.R., Smyth T.J., Moxley D.F., Carter T.E., Allen N.S., Rufty T.W. 2000. Aluminum accumulation at nuclei of cells in the root tip. fluorescence detection using lumogallion and confocal laser scanning microscopy. Plant Physiology 123: 543–552.Tuberosa R., Salvi S. 2007. From QTLs to genes controlling root traits in maize. In: Spiertz JHJ, Struik PC, van Laar HH (eds) Scale and complexity in plant systems research: gene–plant–crop relations. Springer; 13–22.
  • 36. Tyburski J., Dunajska K., Tretyn A. 2009. Reactive oxygen species localization in roots of Arabidopsis thaliana seedlings grown under phosphate deficiency. Plant Growth Regul 59: 27–36.
  • 37. Warwar N., Mor A., Fluhr R., Pandian R.P., Kuppusamy P., Blank A. 2011. Detection and imaging of superoxide in roots by an electron spin resonance spin-probe method. Biophysical Journal 11: 1529-1538.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.