PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 1 |

Tytuł artykułu

Optimizing the DRASTIC Method for nitrate pollution in groundwater vulnerability assessments: a case study in China

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Groundwater vulnerability assessments, using DRASTIC, are important and useful tools for groundwater pollution prevention and control. The DRASTIC method, however, is not appropriate for accurate specific vulnerability assessments where nitrate concentrations are high. A new method has been developed that retains the basic structure of DRASTIC while adding or subtracting parameters, and modifying the parameter ratings and weightings. The resulting DRACILM model was used to assess vulnerability to nitrate pollution in the West Liaohe Plain and as a basis for vulnerability mapping. The accuracy, appropriateness, and reliability of the vulnerability mapping were analyzed using a group of integrated indicators, such as correlation, ANOVA F-statistics, and single-parameter sensitivity analysis. The correlation between vulnerability class and the concentration of NO₃-N in the DRACILM model improved to 0.649, which was 40.6% higher than that obtained by DRASTIC. The ANOVA F-statistic was 27.71, which indicated a lower overlap between the mean values of nitrates in the different vulnerability classes. The single-parameter sensitivity analysis revealed that land use type exhibited the highest and hydraulic conductivity the lowest effective weighting values. The vulnerability maps by DRACILM model could assist planners and government decision-makers with preliminary investigations into planning water protection projects or establishing management scenarios for water resource quality.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

1

Opis fizyczny

p.95-107,fig.,ref.

Twórcy

autor
  • Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
  • College of Environment and Resources, Jilin University, Changchun 130021, China
  • Shenyang Center China Geological Survey Bureau, Shenyang 110034, China
autor
  • Shenyang Center China Geological Survey Bureau, Shenyang 110034, China
autor
  • Shenyang Center China Geological Survey Bureau, Shenyang 110034, China
autor
  • Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
  • Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
autor
  • College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China

Bibliografia

  • 1. SHRESTHA S., SEMKUYU D.J., PANDEY V.P. Assessment of groundwater vulnerability and risk to pollution in Kathmandu Valley, Nepal.Science of The Total Environment, 556, 23, 2016.
  • 2. ALLER L., BENNET T., LEHR J.H., PETTY R.J.DRASTIC: A Standardized System for Evaluating Ground Water Pollution Potential using Hydro Geologic Settings, U.S. EPA, 1987.
  • 3. FOSTER S., HIRATA R., GOMES D., DELIA M., PARIS M. Groundwater Quality Protection. A guide for water utilities, municipal authorities, and environmental agencies. The World Bank. Washington, D.C, 2002.
  • 4. KAZAKIS N., VOUDOURIS K.S. Groundwater vulnerability and pollution risk assessment of porous aquifers to nitrate: Modifying the DRASTIC method using quantitative parameters. Journal of Hydrology, 525, 13, 2015.
  • 5. BAALOUSHA H.M. Groundwater vulnerability mapping of Qatar aquifers. Journal of African Earth Sciences, 124, 75, 2016.
  • 6. MUHAMMAD A.M., TANG Z., DAWOOD A.S., EARL B. Evaluation of local groundwater vulnerability based on DRASTIC index method in Lahore, Pakistan. Geofísica Internacional, 54 (1), 153, 2014.
  • 7. HUAN H., WANG J., TENG Y. Assessment and validation of groundwater vulnerability to nitrate based on a modified DRASTIC model: a case study in jilin city of northeast China. Science of the Total Environment, 440, 14-23, 2012.
  • 8. AL-HANBALI A., KONDOH A. Groundwater vulnerability assessment and evaluation of human activity impact (HAI) within the Dead Sea groundwater basin, Jordan. Hydrogeology Journal, 16 (3), 499, 2008.
  • 9. FARJAD B, MOHAMED T.A., WIJESEKARA N., PIRASTEH S., SHAFRI H.M. Groundwater intrinsic vulnerability and risk mapping. Proceedings of the ICE –Water Management, 165 (8), 441, 2012.
  • 10. MIMI Z.A., MAHMOUD N., MADI M.A. Modified DRASTIC assessment for intrinsic vulnerability mapping of karst aquifers: a case study. Environmental Earth Sciences, 66 (2), 447, 2011.
  • 11. LASAGNA M., DELUCAD A., FRANCHINO E. The role of physical and biological processes in aquifers and their importance on groundwater vulnerability to nitrate pollution. Environmental Earth Sciences,75 (11), 1, 2016.
  • 12. PISCIOTTAA A., CUSIMANOB G., FAVARAA R. Groundwater nitrate risk assessment using intrinsic vulnerability methods: A comparative study of environmental impact by intensive farming in the Mediterranean region of Sicily, Italy. Journal of Geochemical Exploration, 156, 89, 2015.
  • 13. CHENINI S., ZGHIBI A., KOUZANA L. Hydrogeological investigations and groundwater vulnerability assessment and mapping for groundwater resource protection and management: State of the art and a case study. Journal of African Earth Sciences, 109, 11, 2015.
  • 14. SAHOO S., DHAR A., KAR A. Environmental vulnerability assessment using Grey Analytic Hierarchy Process based model. Environmental Impact Assessment Review, 56, 145, 2016.
  • 15. GHOSH T., KANCHAN R. Aquifer vulnerability assessment in the Bengal alluvial tract, India, using GIS based DRASTIC model. Modeling Earth Systems and Environment, 2 (3), 153, 2016.
  • 16. SHUKLA S., MOSTAGHIMI S., SHANHOLT V.O., COLLINS M.C., ROSS B.B. A county-level assessment of ground water contamination by pesticides. Groundwater Monitoring & Remediation, 20 (1), 104, 2000.
  • 17. MOHAMMADI K., NIKNAM R., MAJD V.J. Aquifer vulnerability assessment using GIS and fuzzy system: a case study in Tehran-Karaj aquifer, Iran. Environmental Geology, 58 (2), 437, 2009.
  • 18. WANG J., HE J., CHEN H. Assessment of groundwater contamination risk using hazard quantification, a Modified DRASTIC model and groundwater value, Beijing Plain, China. Science of the Total Environment, 432, 216, 2012.
  • 19. LATHAMANI R., JANARDHANA MR., MAHALINGAM B., SURESHA S. Evaluation of Aquifer Vulnerability Using Drastic Model and GIS: A Case Study of Mysore City, Karnataka, India. Hydrogeol. J, 4, 1031, 2015.
  • 20. LIGGETT J., GILCHRIST A ., DENNY C., PURDY R., MUNRO L., LAPCEVIC P., CARMICHAEL V., EARLE S., TALWAR S., JOURNEAY J.M. Technical summary of intrinsic vulnerability mapping methods in the regional districts of Nanaimo and Cowichan valley. Geological Survey of Canada, Open File 6168, 64, 2010.
  • 21. SENTHILKUMAR P., NITHYA J., BABU S.S. Assessment of Groundwater Vulnerability in Krishnagiri District, Tamil Nadu, India Using DRASTIC Approach. International Journal of Innovative Research in Science, Engineering and Technology, 3 (3), 253, 2014.
  • 22. ERSOY A.F., GÜLTEKIN F. DRASTIC-based methodology for assessing groundwater vulnerability in the Gümüşhacıköy and Merzifon basin (Amasya, Turkey). Earth sciences research journal, 17 (1), 33, 2013.
  • 23. SAIDI S., BOURI S., BEN D.H. Groundwater vulnerability and risk mapping of the Hajeb-jelma aquifer (Central Tunisia) using a GIS-based DRASTIC model. Environmental Earth Sciences, 59 (7), 1579, 2010.
  • 24. OUEDRAOGO I., DEFOURNY P., VANCLOOSTER M. Mapping the groundwater vulnerability for pollution at the pan African scale. Science of the Total Environment, 544, 939, 2016.
  • 25. MUSEKIWA C., MAJOLA K. Groundwater vulnerability map for South Africa. South African Journal of Geomatics, 2 (2), 152, 2013.
  • 26. CHANDOUL I.R., BOUAZIZ S., DHIA H.B. Groundwater vulnerability assessment using GIS-based DRASTIC models in shallow aquifer of Gabes North (South East Tunisia). Arabian Journal of Geosciences, 8 (9), 7619, 2015.
  • 27. ROSEN L. A study of the DRASTIC methodology with emphasis on Swedish conditions. Ground Water, 32, 278, 1994.
  • 28. AYDI W., SAIDI S., CHALBAOUI M., CHAIBI S., DHIA H.B. Evaluation of the Groundwater Vulnerability to Pollution Using an Intrinsic and a Specific Method in a GIS Environment: Application to the Plain of Sidi Bouzid (Central Tunisia). Arabian Journal for Science and Engineering, 38 (7), 1815, 2013.
  • 29. MCLAY C., DRAGDEN R., SPARLING G., SELVARAJAH N. Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: a comparison of three approaches. Environ Pollut, 115, 191, 2001.
  • 30. PANAGOPOULOS G.P., ANTONAKOS A.K., LAMBRAKIS N.J. Optimization of the DRASTIC method for groundwater vulnerability assessment via the use of simple statistical methods and GIS. Hydrogeology, 14 (1), 894, 2006.
  • 31. FIJANI E., NADIRI A.A., MOGHADDAM A.A., TSAI T.C., DIXON B. Optimization of DRASTIC method by supervised committee machine artificial intelligence to assess groundwater vulnerability for Maragheh-Bonab plain aquifer, Iran. Journal of Hydrology, 503, 89, 2013.
  • 32. MISHIMA Y., TAKADA M., KITAGAWA R. Evaluation of intrinsic vulnerability to nitrate contamination of groundwater: appropriate fertilizer application management. Environmental Earth Sciences, 63 (3), 571, 2011.
  • 33. BAGHAPOUR M.A., NOBANDEGANI A.F., TALEBBEYDOKHTI N., BAGHERZADEH S., NADIRI A.A., GHAREKHANI M., CHITSAZAN N. Optimization of DRASTIC method by artificial neural network, nitrate vulnerability index, and composite DRASTIC models to assess groundwater vulnerability for unconfined aquifer of Shiraz Plain, Iran. Journal of Environmental Health Science and Engineering, 14 (1), 13, 2005.
  • 34. YANG L., YANG Y., FENG Z., ZHENG Y. Effect of maize sowing area changes on agricultural water consumption from 2000 to 2010 in the West Liaohe Plain, China. Journal of Integrative Agriculture, 15 (6), 1407, 2016.
  • 35. BOZ B., GUMIERO B. Nitrogen removal in an afforested riparian zone: the contribution of denitrification processes. Hydrobiologia, 774 (1), 167, 2016.
  • 36. U.S. Environmental Protection Agency. Environmental indicator of water quality in the United States: Washington, D.C., Office of Water, EPA 841-R-96-002, EPA, Washington, DC, 1996.
  • 37. ENTEZARI M., YAMANI M., AGHDAM M.J. Evaluation of intrinsic vulnerability, hazard and risk mapping for karst aquifers, Khorein aquifer, Kermanshah province: a case study. Environmental Earth Sciences, 75 (5), 1, 2016
  • 38. ALRAWABDEH A.M., ALANSARI N.A., ALTAANI A.A., KNUTSSON S. A GIS-Based Drastic Model for Assessing Aquifer Vulnerability in Amman-Zerqa Groundwater Basin, Jordan. Journal of Clinical Oncology Official Journal of the American Society of Clinical Oncology, 5 (5), 490-, 2013.
  • 39. PORCEL R.A., SCHUTH C., LEONGOMEZ H.D., HOPPE A., LEHNE R. Land-Use Impact and Nitrate Analysis to Validate DRASTIC Vulnerability Maps Using a GIS Platform of Pablillo River Basin, Linares, N.L., Mexico. International Journal of Geosciences, 5 (12), 1468, 2014.
  • 40. LAKE L.R., LOVETT A.A., HISCOCK K.M. BETSON M., FOLEY A., SÜNNENBERG G., EVERS S., FLETCHER S. Evaluating factors influencing groundwater vulnerability to nitrate pollution: developing the potential of GIS. J. Environ. Manage, 328 (68), 315, 2003.
  • 41. BRYMAN A., CRAMER D. Quantitative Data Analysis with SPSS for Windows. Routledge, London, 1997.
  • 42. DHAMI I., DENG J., STRAGER M., CONLEY J. Suitability-sensitivity analysis of nature-based tourism using geographic information systems and analytic hierarchy process. Journal of Ecotourism, 1, 1, 2016.
  • 43. NAPOLITANO P., FABBRI A.G. Single-parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS. Application of Geographic Information Systems in Hydrology and Water Resources Management, 235, 559, 1996.
  • 44. BABIKER I.S., MOHAMED A.A., MOHAMED, H.T., KATO K. A GIS-based DRASTICmodel for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan. Sci. Total Environ, 345 (1-3), 127, 2005.
  • 45. LI R., MERCHANT J.W. Modeling vulnerability of groundwater to pollution under future scenarios of climate change and biofuels-related land use change: A case study in North Dakota, USA. Science of the Total Environment. 447, 32, 2013.
  • 46. JANG C.S., LIN C.W., LIANG C.P., CHEN J.S. Developing a reliable model for aquifer vulnerability. Water Research, 30 (1), 175, 2016.
  • 47. STIGTER T., ALMEIDA P., CARVALHO D.A., RIBEIRO L. Evaluation of an intrinsic and a specific vulnerability assessment method in comparison with groundwater salinisation and nitrate contamination levels in two agricultural regions in the south of Portugal. Hydrogeol J, 14 (3), 79, 2006.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-37013cc1-d627-4e72-b56a-15eacc45f03a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.