Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 62 | 4 |
Tytuł artykułu

Iron bacterial phylogeny and their execution towards iron availability in Equatorial Indian Ocean and coastal Arabian Sea

Treść / Zawartość
Warianty tytułu
Języki publikacji
Based on distinct colony morphology, color, size, shape and certain other traits, 92 bacterial isolates were investigated to understand their managerial ability on iron from the Arabian Sea and Equatorial Indian Ocean samples. The ARDRA (amplified rDNA restriction analysis) applied to eliminate the duplication of the bacterial strains, resulted 39 different banding patterns. The 16S rRNA gene sequencing data indicate the dominancy of three phylogenetic groups, α-Proteobacteria (10.25%), γ-Proteobacteria (35.89%) and Bacilli (53.84%) in these waters. Marinobacter and Bacillus were the only common genera from both of the regions. Pseudoalteromonas, Halomonas, Rheinheitnera, Staphylococcus and Idiomarina were some of the other genera obtained from the Arabian Sea. Erythrobacter, Roseovarius, Sagittula and Nitratireductor were found mostly in Equatorial Indian Ocean. In addition, 16S rRNA gene sequence data of some of our iron bacterial strains belong to novel species and one isolate ASS2A could form a new genus. Close to 23% of the isolates were able to produce high affinity sets of ligands like siderophores to mediate iron transport into the cell. The current study indicated that the Equatorial Indian Ocean species were well adapted to oxidize iron as an electron acceptor and the Arabian Sea species preferably go through siderophore production.
Opis fizyczny
  • Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, India
  • Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, India
  • Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, India
  • Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, India
  • Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, India
  • Andrews S.C., A.K. Robinson and F Rodriguez-Quinones. 2003. Bacterial iron homeostasis. FEMS Microbiol. Rev. 27: 215-237.
  • Arnow L.E. 1937. Colorimetric determination of the components of 3,4-dihydroxyphnyl-alanine tyrosine mixtures. J. Biol. Chem. 118: 531-537
  • Ashelford K.E., N.A. Chuzhanova, J.C. Fry, A.J. Jones and A.J. Weightman. 2005. At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl. Environ. Microbiol. 71: 7724-7736.
  • Cameron F.J., M.V. Jones and C. Edwards. 1984. Effects of salinity on bacterial iron oxidation. Curr. Microbiol. 10(6): 353-356.
  • Cochlan W.P. 2001. The heterotrophic bacterial response during a mesoscale iron enrichment experiment (IronEx II) in the eastern equatorial Pacific Ocean. Limnol. Oceanogr. 46(2): 428-435.
  • Cornell R.M. and U. Schwertmann. 1996. The iron oxides: Structure, properties, reactions, occurrence and uses. 2nd ed. John Wiley and Sons, Weinheim, Germany.
  • Dertz E.A., A. Stintzi and K.N. Raymond. 2006. Siderophore-mediated Iron Transport in B.subtilis and C. glutamicum. J. Biol. Inorg. Chem. 11: 1087-1097.
  • D'Onofrio A., J.M. Crawford, E.J. Stewart, K. Witt, E. Gavrish, S. Epstein, J. Clardy and K. Lewis. 2010. Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem. Biol. 17: 254-264.
  • Edwards K.J., W. Bach, T.M. McCollom and D.R. Rogers. 2004. Neutrophilic Iron-Oxidizing Bacteria in the Ocean; Their Habitats, Diversity, and Roles in Mineral Deposition, Rock Alteration, and Biomass Production in the Deep-Sea. Geomicrobiol. J. 21: 393-404.
  • Edwards K.J., D.R. Rogers, C.O. Wirsen and T.M. McCollom. 2003. Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing chemolitho-autotrophic α- and γ-Proteobacteria from the deep sea. Appl. Environ. Microbiol. 69: 2906-2913.
  • Emerson D., E.J. Fleming and J.M. McBeth. 2010. Iron-Oxidizing Bacteria: An Environmental and Genomic Perspective. Annu. Rev. Microbiol. 64: 561-583.
  • Fukuda R., H. Ogawa, T. Nagata and I. Koike. 1998. Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments. Appl. Environ. Microbiol. 64: 3352-3358.
  • Lane D.J. 1991.16S/23SrRNA sequencing, pp. 115-175. In: Stacke-brandt E and M. Goodfellow (Eds). Nucleic acid techniques in bacterial systematic. John Wiley and Sons, New York.
  • Martinez J.S., G.P. Zhang, P.D. Holt, H.T. Jung, C.J. Carrano, M.G. Haygood and A. Butler. 2000. Self-assembling amphiphilic siderophores from marine bacteria. Science 287: 1245-1247.
  • Miethke M. and M.A. Marahiel. 2007. Siderophore-based iron acquisition and pathogen control. Microbiol. Mol. Biol Rev. 71: 413-451.
  • Neilands J.B. 1981. Microbial iron compounds. Annu. Rev. Biochem. 50:715-731.
  • Nakabayashi S., K. Kuma, K. Sasaoka, S. Saitoh, M. Mochizuki, N. Shiga and M. Kusakabe. 2002. Variation in iron(III) solubility and iron concentration in the northwestern North Pacific Ocean. Limnol. Oceanogr. 47: 885-892.
  • Nakabayashi S., M. Kusakabe, K. Kuma and I. Kudo. 2001. Vertical distributions of iron(III) hydroxide solubility and dissolved iron in the north-western North Pacific Ocean. Geophys. Res. Lett. 28: 4611-4614.
  • Okujo N., M. Saito, S. Yamamoto, T. Yoshida, S. Miyoshi and S. Shinoda. 1994. Structure of vulnibactin, a new polyamine-containing siderophore from Vibrio vulnificus. Biometals 7: 109-116.
  • Pakulski J.D., R.B. Coffin, C.A. Kelley, S. Holder, R. Downer, A.A.S. Peter, M.M. Lyons and W.H. Jeffrey. 1996. Iron stimulation of Antarctica bacteria. Nature 383: 133-134.
  • Parvathi A., K. Krishna, J. Jose, N. Joseph and S. Nair. 2009. Biochemical and molecular characterization of Bacillus pumilus isolated from coastal environment in Cochin, India. Braz. J. Microbiol. 40: 269-275.
  • Payne S.M. 1994. Detection, isolation and characterisation of siderophores. Method. Enzymol. 235: 329-344.
  • Price N.M., B.A. Ahner and F.M.M. Morel. 1994. The equatorial Pacific Ocean: Grazer controlled phytoplankton populations in an iron-limited ecosystem. Limnol Oceanogr. 39: 520-534.
  • Reid R.T. and A. Butler. 1991. Investigation of mechanism of iron acquisition by marine bacterium Alteromonas luteoviolaceus: Characterization of siderophore production. Limnol Oceanogr. 36: 1783-1792.
  • Schalk I.J., M. Hannauer and A. Braud. 2011. New roles for bacterial siderophores in metal transport and tolerance. Environ. Microbiol. 13:2844-2854.
  • Schwyn B. and J.B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 47-56.
  • Shenker M., I. Oliver, M. Helmann, Y. Hadar and Y. Chen. 1992. Utilization by tomatoes of iron mediated by a siderophore produced by Rhizopus arrhizus. J. Plant. Nutr. 15: 2173-2181.
  • Snow G.A. 1954. Mycobactin, a growth factor for Mycobacterium johnei. Part II. Degradation and identification of fragments. J. Chem. Soc. 2588-2596.
  • Sogaard E.G., R. Aruna, J. Abraham-Peskir and C.B. Koch. 2001. Conditions for biological precipitation of iron by Gallionella ferruginea in a slightly polluted ground water. Appl. Geochem. 16: 1129-1137.
  • Sokol P.A., C.J. Lewis and J.J. Dennis. 1992. Isolation of a novel siderophore from Pseudomonas cepacia. J. Med. Microbiol 36: 184-189.
  • Sudek L.A., A.S. Templeton, B.M. Tebo and H. Staudige. 2009. Microbial Ecology of Fe (hydr) oxide Mats and Basaltic Rock from Vailulu'u Seamount, American Samoa. Geomicrobiol. J. 26: 581-596.
  • Sullivan T.S., S. Ramkissoon, V.H. Garrison, A. Ramsubhag and J.E. Thies. 2012. Siderophore production of African dust microorganisms over Trinidad and Tobago. Aerobiologia 28: 391-401.
  • Tamura K„ J. Dudley, M. Nei and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599.
  • Tamura K., M. Nei and S. Kumar. 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences, USA 101: 11030-11035.
  • Thompson J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin and D.G. Higgins. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic. Acids. Res. 24: 4876-4882.
  • Tortell P.D., M.T. Maldonado and N.M. Price. 1996. The role of heterotrophic bacteria in iron-limited ocean ecosystems. Nature 383: 330-332.
  • Trick C.G. 1989. Hydroxamate-siderophore production and utilization by marine eubacteria. Curr. Microbiol. 18: 375-378.
  • Turner D.R., and K.A. Hunter. 2001. The biogeochemistry of iron in seawater. IUPAC series on analytical and physical chemistry of environmental systems. Vol. 7. John Wiley and Sons, New York.
  • Vreeland R.H., W.D. Rosenzweig and D.W. Powers. 2000. Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407: 897-900.
  • Wang J., G. Muyzer, P.L. Bodelier and H.J. Laanbroek. 2009. Diversity of iron oxidizers in wetland soils revealed by novel 16S rRNA primers targeting Gallionella related bacteria. ISME. J. 3: 715-725.
  • Wu J. and G.W. Luther. 1994. Size-fractionated iron concentrations in the water column of the western North Atlantic Ocean. Limnol. Oceanogr. 39(5): 1119-1129.
  • Zawadzka A.M., R.J. Abergel, R. Nichiporuk, U.N. Andersen and K.N. Raymond. 2009. Siderophore-Mediated Iron Acquisition Systems in Bacillus cereus: Identification of Receptors for Anthrax Virulence-Associated Petrobactin. Biochem. J. 48: 3645-3657.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.