Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 29 | 2 |
Tytuł artykułu

Stress-induced expression of cucumber chitinase and Nicotiana plumbaginifoliabeta-1,3-glucanase genes in transgenic potato plants

Treść / Zawartość
Warianty tytułu
Języki publikacji
The genes encoding for a cucumber class III chitinase and Nicotiana plumbaginifolia class I glucanase were co-introduced into Slovak potato (Solanum tuberosum L.) cultivar ETA using Agrobacterium tumefaciens. Expression of both genes was driven by wound-inducible polyubiquitin promoter isolated from Slovak potato breeding line 116/86. Analyses showed inducible, peel-specific expression of both transgenes under stress conditions. The effect of transgene expression on fungal susceptibility of transformants was evaluated in vitro and in vivo. Experiments with crude protein extracts isolated from transgenic microtubers showed growth inhibition of Rhizoctonia solani hyphae in the range from 7.3 to 14.2%. In contrast, experiments performed in growth chamber conditions revealed that the polyubiquitin promoter driven transgene expression did not ensure any obvious increase of transgenic potato resistance against Rhizoctonia solani.
Słowa kluczowe
Opis fizyczny
  • Institute of Plant Genetics and Biotechnology SAS, Akademicka 2, P.O. Box 39A, 950 07 Nitra, Slovak Republic
  • Institute of Plant Genetics and Biotechnology SAS, Akademicka 2, P.O. Box 39A, 950 07 Nitra, Slovak Republic
  • The Potato Research and Breeding Institute, Popradska 518, Velka Lomnica 059 52, Slovak Republic
  • Institute of Plant Genetics and Biotechnology SAS, Akademicka 2, P.O. Box 39A, 950 07 Nitra, Slovak Republic
  • Slovak Agricultural Research Authority, Hlohovska 2, 949 92 Nitra, Slovak Republic
  • Institute of Plant Genetics and Biotechnology SAS, Akademicka 2, P.O. Box 39A, 950 07 Nitra, Slovak Republic
  • Faculty of Biotechnology and Food Sciences, Slovak University of Agricultur, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
  • Institute of Plant Genetics and Biotechnology SAS, Akademicka 2, P.O. Box 39A, 950 07 Nitra, Slovak Republic
  • Anand A, Zhou T, Trick HN, Gill BS, Bockus W, Muthukrishnan S (2003) Greenhouse and field testing of transgenic wheat plants stably expressing genes for thaumatin-like protein, chitinase and glucanase against Fusarium graminearum. J Exp Bot 54:1101–1111
  • Beerhues L, Kombrink E (1994) Primary structure and expression of mRNAs encoding basic chitinase and 1,3-β-glucanase in potato. Plant Mol Biol 24:353–367
  • Belknap WR, Garbarino JE (1996) The role of ubiquitin in plant senescence and stress responses. Trends Plant Sci 10:331–335
  • Binet MN, Lepetit M, Weil JH, Tessier LH (1991) Analysis of a sunflower polyubiquitin promoter by transient expression. Plant Sci 79:87–94
  • Bowles DJ (1990) Defence related proteins in higher plants. Ann Rev Biochem 59:873–907
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quanties of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
  • Broglie K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvals CJ, Broglie R (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 25:1194–1197
  • Christensen AH, Sharrok RA, Quail PH (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing and promoter activity following transfer to protoplast by electroporation. Plant Mol Biol. 18:675–689
  • De Loose M, Alliote T, Gheysen G, Genetello C, Gielen J, Soetaert P, van Montagu M, Inze D (1988) Primary structure of a hormonally regulated β-1,3 glucanase of Nicotiana plumbaginifolia. Gene 70:13–23
  • Garbarino JE, Rockhold DR, Belknap WR (1992) Expression of stress-responsive ubiquitin genes in potato tubets. Plant Mol Biol 20:235–244
  • Garbarino JE, Oosumi T, Belknap WR (1995) Isolation of a polyubiquitin promoter and its expression in transgenic potato plants. Plant Physiol 109:1371–1378
  • Hollis T, Honda Y, Fuzamizo T, Marcottet E, Day PJ, Robertus JD (1997) Kinetic analysis of barley chitinase. Arch Biochem Biophys 344:335–342
  • Honée G (1999) Engineered resistance against fungal pathogens. J Plant Pathol 105:319–326
  • Jach G, Görnhardt B, Mundy J, Logemann J, Pinsdorf E, Leah R, Schell J, Maas C (1995) Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J 8:97–109
  • Jongedijk E, Tigelaar H, Van Roekel JSC, Bres-Vloemans SA, Dekker I, Van Den Elzen PJM, Cornelissen BJC, Melchers L (1995) Synergistic activity of chitinases and β-1,3-glucanases enhances fungal resistance in transgenic tomato plants. Euphytica 85:173–180
  • Kasprzewska A (2003) Plant chitinases—regulation and functions. Cell Mol Biol Lett 8:809–824
  • Kawaleck P, Somssisch IE, Feldbrügge M, Hahlbrock M, Weisshaar B (1993) Polyubiquitin gene expression and structural properties of the ubi 4-2 gene in Petroselinum crispum. Plant Mol Biol 21:673–684
  • Kombrink E, Somssich IE (1995) Defence responses of plants to pathogens. Adv Bot Res 21:2–26
  • Kuranda MJ, Robbins PW (1991) Chitinase is required for cell separation during growth of Saccharomzces cerevisiae. J Biol Chem 266:19758–19767
  • Leah R, Tommerup H, Swendsen I, Mundy J (1991) Biochemical and molecular characterisation of three barley seed proteins with anti-fungal properties. J Biol Chem 266:1464–1473
  • Libiakova G, Jorgensen B, Palmgren G, Ulvskov P, Johansen E (2001) Efficacy of an intron-containing kanamycin resistance gene as a selectable marker in plant transformation. Plant Cell Rep 20:610–615
  • Ma Y, Sawhney VK, Steeves TA (1992) Staining of paraffin-embedded plant material in safranin and fast green without prior removal of the paraffin. Can J Bot 71:996–999
  • Matušíková I, Salaj J, Moravčíková J, Mlynárová L, Nap JP, Libantová J (2005) Tentacles of in vitro-grown round-leaf sundew (Drosera rotundifolia L.) show induction of chitinase activity upon mimicking the presence of prey. Planta 222:1020–1027
  • Mauch F, Mauch-Mani B, Boller T (1988) Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combinations of chitinase and β-1,3-glucanase. Plant Physiol 88:936–942
  • Melander M (2004) Transgenic resistance to pathogens and pests. Doctor’s dissertation, Swedish University of Agricultural Sciences, Alnarp, 1- 44. (ISSN 1401-6249, ISBN 91-576-6776-4)
  • Melchers LS, Stuiver MH (2000) Novel genes for disease-resistance breeding. Curr Opin Plant Biol 3:147–152
  • Métraux JP, Burkhart W, Moyer M, Dichner S, Middlesteadt W, Williams S, Payne G, Carnes M, Ryals J (1989) Isolation of a complementary DNA encoding a chitinase with structural homology to a bifunctional lysozyme/chitinase. Proc Natl Acad Sci USA 86:896–900
  • Mlynárová L, Jansen RC, Conner AJ, Stiekema WJ, Nap JP (1995) The MAR-mediated reduction in position effect can be uncoupled from copy number-dependent expression in transgenic plants. Plant Cell 7:599–609
  • Mlynárová L, Libantová J, Vrba L, Nap JP (2002) The promiscuity of heterospecific lox sites increases dramatically in the presence of palindromic DNA. Gene 296:129–137
  • Moravčíková J, Libantová J, Matušíková I, Libiaková G, Nap JP, Mlynárová L (2003) Genetic transformation of Slovak cultivar of potato (Solanum tuberosum L.): efficiency and the behaviour of the transgene. Biologia 58:1075–1080
  • Moravčíková J, Matušíková I, Libantová J, Bauer M, Mlynárová L (2004) Expression of cucumber class III chitinase and Nicotiana plumbaginifolia class I glucanase genes in transgenic potato plants. Plant Cell Tiss Org Cult 79:161–168
  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497
  • Norris SR, Meyer SE, Callis J (1993) The intron of Arabidopsis thaliana polyubiquitin genes is conserved in location and is a quantitative determinant of chimeric gene expression. Plant Mol Biol 21:895–906
  • Paxton DJ (1991) Assays for antifungal activity. Methods Plant Biochem 6:33–46
  • Plesse B, Criqui MC, Durr A, Parmentier Y, Fleck J, Genschik P (2001) Effects of the polyubiquitin gene UbiU4 leader intron and first ubiquitin monomer on reporter gene expression in Nicotiana tabacum. Plant Mol Biol 45:655–667
  • Raharjo SHT, Hernandez MO, Zhang YY, Punja ZK (1996) Transformation of pickling cucumber with chitinase-encoding genes using Agrobacterium tumefaciens. Plant Cell Rep 15:591–596
  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York
  • Sela-Buurlage MB, Ponstein AS, Bres-Vloemans SA, Melchers LS, Van Den Elzen PJM, Cornelissen BJC (1993) Only specific tobacco (Nicotiana tabacum) chitinase and β-1,3-glucanase exhibit antifungal activity. Plant Physiol 101:857–863
  • Siefert F, Grossmann K (1997) Induction of chitinase and β-1,3-glucanase activity in sunflower suspension cells in response to an elicitor from Phytophthora megasperma f. ap. glycinea (Pmg.). Evidence for regulation by ethylene and 1-aminocyclopropane-1-carboxylic acid (ACC). J Exp Bot 48:2023–2029
  • Tabei Y, Kitade S, Nishizawa Y, Kikuchi N, Kayano T, Hibi T, Akutsu K (1998) Transgenic cucumber plants harbouring a rice chitinase gene exhibit enhanced resistance to gray mold (Botrytis cinerea). Plant Cell Rep 17:159–164
  • Townsend GR, Heuberger JW (1943) Methods for estimating losses caused by diseases in fungicide experiments. Pl Dis Rep 27:340–343
  • Xu YI, Chang PFL, Liu D, Narasimhan L, Raghothama KG, Hasegawa PM, Bressan RA (1994) Plant defence genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell 6:1077–1085
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.