PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 61 | 3 |

Tytuł artykułu

Ethanol production potential of ethanol-tolerant Saccharomyces and non-Saccharomyces yeasts

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Four ethanologenic ethanol-tolerant yeast strains, Saccharomyces cerevisiae (ATKU132), Saccharomycodes ludwigii (ATKU47), and Issa- tchenkia orientalis (ATKU5-60 and ATKU5-70), were isolated by an enrichment technique in yeast extract peptone dextrose (YPD) medium supplemented with 10% (v/v) ethanol at 30°C. Among non-Saccharomyces yeasts, Sd. ludwigii ATKU47 exhibited the highest ethanoltolerance and ethanol production, which was similar to S. cerevisiae ATKU132. The maximum range of ethanol concentrations produced at 37°C by S. cerevisiae ATKU132 and Sd. ludwigii ATKU47 from an initial D-glucose concentration of 20% (w/v) and 28% (w/v) sugarcane molasses were 9.46–9.82% (w/v) and 8.07–8.32% (w/v), respectively.

Wydawca

-

Rocznik

Tom

61

Numer

3

Opis fizyczny

p.219-221,fig.,ref.

Twórcy

  • Department of Founding Project of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus, Nakorn Pathom, Thailand
autor
autor
autor

Bibliografia

  • Basso L.C., H.V. De Amorim, A.J. De Oliveira and M.L. Lopes. 2008. Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Research. 8: 1155–1163.
  • Blieck L., G. Toye, F. Dumortier, K.J. Verstrepen, F.R. Delvaux, J.M. Thevelein and P. Van Dijck. 2007. Isolation and characterization of brewer’s yeast variants with improved fermentation performance under high-gravity conditions. Appl. Environ. Microbiol. 73: 815–824.
  • Ciani M. and G. Picciotti. 1995. The growth kinetics and fermentation behaviour of some non-Saccharomyces yeasts associated with wine-making. Biotechnol. Lett. 17: 1247–1250.
  • Fleet G.H. 2003. Yeast interactions and wine flavour. Int. J. Food Microbiol. 86: 11–22.
  • Fleet G.H. 2008. Wine yeasts for the future. FEMS Yeast Res. 8: 979–995.
  • Gil J.V., J.J. Mateo, M. Jiménez, A. Pastor and T. Huerta. 1996. Aroma compounds in wine as influenced by apiculate yeasts. J. Food Sci. 61: 1247–1250.
  • Hu X.H., M.H. Wang, T. Tan, J.R. Li, H. Yang, L. Leach, R.M. Zhang and Z.W. Luo. 2007. Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae. Genetics. 175: 1479–1487.
  • O’Donnell K. 1993. Fusarium and its near relatives, in the fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics, Eds. D.R. Reynolds and J.W. Taylor,CAB International: Wallingford. p. 225–233.
  • Pina C., J.A. Couto and T. Hogg. 2004. Inferring ethanol tolerance of Saccharomyces and non-Saccharomyces yeasts by progressive inactivation. Biotechnol. Lett. 26: 1521–1527.
  • Querol A., M.T. Fernandez-Espinar, M. del Olmo and E. Barrio. 2003. Adaptive evolution of wine yeast. Int. J. Food Microbiol. 86: 3–10.
  • Shi D.J., C.L. Wang and K.M. Wang. 2009. Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 36: 139–147.
  • Zhao X.Q. and F.W. Bai. 2009. Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production. J. Biotechnol. 144: 23–30.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-36cb2365-f2b8-4d6c-aeb7-cb6caf526052
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.