PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 53 | 2 |
Tytuł artykułu

Preliminary assessment of the ecochemical condition of soils after fertilization of younger spruce Picea abies (L.) H. Karst. stands in the Beskid Slaski and Zywiecki Mts.

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The experimental plots were located in the middle forest zone (900– 950 m) on two nappes of the flysch Carpathians: Magura (the Ujsoły Forest District) and Silesian (the Wisła Forest District) in the spruce stands of age class 21– 40 years. Serpentinite was introduced in the autumn of 2008 on all plots while other fertilizers (N, P, NP and NPK) in the spring of 2009. Based on the chemical composition of soil solutions collected in lysimeters placed at the depth of 20 cm in the autumn 2008 and the spring and autumn 2009, ecochemical parameters were calculated: acid neutralization capacity (ANCaq), alkalinity (ALK), the degree of soil acidity (Ma%), acidic cations (Ma), saturation of the exchangeable complex of the soil solid phase (Mb) with alkalis, saturation with alkalis (BS), molar relations Ca/Al, Mb/Al, BC/Al. After the winter, soil solutions became acidic, especially in the Wisła Forest District. The saturation of the studied soils demonstrates moderate flexibility of soils in the Wisła Forest District in relation to acid load, and high flexibility of the Ujsoły soils. The opposite trend was observed for the degree of acidity of soils. Acid neutralization capacity and alkalinity of the waters showed significant variations in soil pH even in the case of small variations in the composition of the solution, if they were caused by the inflow of the anions of NO3 - and SO4 2-. After application of the fertilizers, an increase of Mg, Ca and Mb was noted in the soil solution, determined in the overlaying highly acidic organic horizons trough the ion-exchange buffering mechanism of highly protonated functional groups with high buffering capacity. Highly improved content of Mg in a soil, and in some cases – also the content of N, P and K, present potential improvement of forest growth capacity without the hazard of adverse side-effects of liming. Aluminum stress in the spruce is unlikely, while trees in the control plots in the Wisła Forest District may already be sensitive.
Wydawca
-
Rocznik
Tom
53
Numer
2
Opis fizyczny
p.93-103,fig.,ref.
Twórcy
autor
  • Department of Forest Ecology, Faculty of Forestry, University of Agriculture in Krakow, Al.29 Listopada 46, 31-425 Krakow, Poland
autor
  • Department of Forest Soil, Faculty of Forestry, University of Agriculture in Krakow, Al.29 Listopada 46, 31-425 Krakow, Poland
autor
  • Department of Forest Ecology, Faculty of Forestry, University of Agriculture in Krakow, Al.29 Listopada 46, 31-425 Krakow, Poland
autor
  • Department of Forest Soil, Faculty of Forestry, University of Agriculture in Krakow, Al.29 Listopada 46, 31-425 Krakow, Poland
autor
  • Department of Forest Soil, Faculty of Forestry, University of Agriculture in Krakow, Al.29 Listopada 46, 31-425 Krakow, Poland
  • Department of Forest Soil, Faculty of Forestry, University of Agriculture in Krakow, Al.29 Listopada 46, 31-425 Krakow, Poland
autor
  • Department of Forest Ecology, Faculty of Forestry, University of Agriculture in Krakow, Al.29 Listopada 46, 31-425 Krakow, Poland
Bibliografia
  • Aber J.D. 1992. Nitrogen cycling and nitrogen saturation in temperate forest ecosystems. Trends in Ecology and Evolution, 7, 220– 223.
  • Barszcz J., Małek S. 2003. Perspektywy wzrostu świerka w wyższych położeniach Beskidu Śląskiego na obszarach zagrożenia trwałości lasu w świetle oceny jego odnowień. W: Drzewostany świerkowe stan, problemy, perspektywy rozwojowe, PTL, 141– 159.
  • Barszcz J., Małek S., Majsterkiewicz K. 2009. Dynamika zmian zagrożenia rozpadem świerczyn Beskidu Śląskiego i Żywieckiego. Prace Komisji Nauk Rolniczych, Leśnych i Weterynaryjnych PAN 11, 93– 113.
  • Binkley D., Hogberg P. 1997. Does atmospheric deposition of nitrogen threaten Swedish forests? Forest Ecology and Management, 92, 119– 152.
  • Block J., Eichborn J., Gehrmann J., Kölling C., Matzner E., Meiwes K.J., Wilpert K., Wolff B. 2000. Kennwerte zur Charakterisierung des ökochemischen Bodenzustandes und des Gefährdungspotentials durch Bodenversauerung und Stickstoffsättigung an Level II-Waldökosystem-Dauerbeobachtungsflächen. Arbeitskreis C, der Bund-Länder Arbeitsgruppe Level II. BML, Bonn.
  • Bredemeier M. 1988. Forest canopy transformation of atmospheric deposition. Water, Air and Soil Pollution, 40, 121– 138.
  • Bytnerowicz A., Godzik S., Poth M., Anderson I., Szdzuj J., Tobias C., Macko S., Kubiesa P., Staszewski T., Fenn M. 1999. Chemical composition of air, soil and vegetation in forests of the Silesian Beskid Mountains, Poland. Water, Air and Soil Pollution,116, 141– 150.
  • Cape J.N., Freer-Smith P.H., Paterson I.S., Parkinson J.A., Wolfenden J. 1990. The nutritional status of Picea abies (L.) Karst. across Europe, and implications for ‘forest decline’. Trees, 4, 211– 224.
  • Cronan C.S., Grigal D.F. 1995. Use of calcium/aluminum ratios as indicators of stress in forest ecosystems. Journal of Environmental Quality, 24, 209– 226.
  • Draaijers G.P.J., Erisman J.W. 1995. A canopy budget model to assess atmospheric deposition from through-fall measurement. Water, Air and Soil Pollution, 85, 2253– 2258.
  • Draaijers G.P.J., Erismann J.W., Van Leuven N.F.M., Römer F.G., Vinkel B.H., Veltkamp A.C., Vermeulen A.T., Wyers G.P. 1997. The impact of canopy exchange on differences observed between atmospheric deposition and throughfall fluxes. Atmospheric Environment, 31, 387– 397.
  • Falkengren-Grerup U., Linnermark N., Tyler G. 1987. Changes in acidity and cation pools of south Swedish soils between 1949 and 1985. Chemosphere, 16, 2239– 2248.
  • Flower D., Smith R., Muller J., Cape J.N., Sutton M., Erisman J.W., Fagerli H. 2007. Long-term trends in sulphur and nitrogen deposition in Europe and the cause of non-linearities. Water, Air and Soil Pollution, 7, 41– 47.
  • Harriman R., Gillespie E., King D. 1990. Short-term ionic response as indicators of hydrochemical processes in the Alt A’Mharcaidh catchment, Western Cairngorms, Scotland. Journal of Hydrology, 116, 267– 285.
  • Heinrichs H., Siewers U., Böttcher G., Matschullat J., Roostai A.H., Schneider J., Ulrich B. 1994. Auswirkungen von Luftverunreinigungen auf Gewösserim Einzugsgebiet der Seetalsperre. In: Gefahr für Ökosysteme und Wasserqualität (eds.: J. Matschullat, H. Heinrichs, J. Schneider, B. Urlich). Springer Verlag, Berlin, 233– 259.
  • Hornung M., Sutton M.A. 1995. Impact of nitrogen deposition in terrestrial ecosystems. Atmospheric Environment, 29, 3395– 3396.
  • Huber C., Kreutzer K., Röhle H., Rothe A. 2004. Response of artificial acid irrigation, liming, and Nfertilisation on elemental concentrations in needles, litter fluxes, volume increment, and crown transparency of a N saturated Norway spruce stand. Forest Ecology and Management, 200, 3– 21.
  • ICP-Forest Manual. 1998. Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. UN-ECE, Fed. Res. Centre for Forestry and Forest Products (BFH).
  • Jóźwiak M., Kozłowski R. (2004). Transformacja opadów atmosferycznych w wybranych geoekosystemach w Górach Świętokrzyskich. Regionalny Monitoring Środowiska Przyrodniczego, 5, 199– 217.
  • Kowalkowski A. 2002. Wskaźniki ekochemicznego stanu gleb leśnych zagrożonych przez zakwaszenie. Regionalny Monitoring Środowiska Przyrodniczego, 3, 31– 44.
  • Kreutzer K. 1995. Effects of forest liming on soil processes. Plant and Soil, 168/169, 447– 470.
  • Lundström U.S., Bain D.C., Taylor A.F.S, Van Hees P.A.W. 2003. Effects of acidification and its mitigation with lime and wood ash on forest soil processes: a review. Water, Air, and Soil Polution, 3, 5– 28.
  • Łomnicki A. 1995. Wprowadzenie do statystyki dla przyrodników. PWN, Warszawa.
  • Małek S. 2010. Nutrient fluxes in planted Norway spruce stands of different age in Southern Poland. Water, Air, and Soil Pollution, 209, 45– 59.
  • Małek S. 2009. Sustainability of Picea abies of Istebna provenance in Dupniański Stream catchment as dependent on stand age class. Dendrobiology, 61, 95– 104.
  • Małek S., Astel A. 2007. Source apportionment modeling of bulk precipitation chemistry on the Dupniański Stream catchment area (Silesian Beskid – Southern Poland) within 1999– 2003. Polish Journal of Environmental Studies, 16 (3B), 308– 315.
  • Małek S., Astel A. 2008. Throughfall chemistry in a spruce chronosequence in southern Poland. Environmental Pollution, 155 (3), 517– 527.
  • Małek S., Barszcz J., Januszek K. 2008. Wytypowanie i weryfikacja lokalizacji powierzchni badawczych do nawożenia całopowierzchniowego. In: Zabiegi hodowlane poprawiające warunki wzrostu, odżywianie i zdrowotność w odnowieniach i drzewostanach zagrożonych na terenie Beskidów ze szczególnym uwzględnieniem rewitalizacji gleb dolomitami oraz nowymi nawozami wieloskładnikowymi o przedłużonym działaniu – etap I (eds.: S. Małek, J. Barszcz), 4– 20.
  • Małek S., Martinson L., Sverdrup H. 2005. Modelling future soil chemistry at a highly polluted forest site at Istebna in Southern Poland using the “SAFE” model. Environmental Pollution, 137, 3, 568– 573.
  • Misson L., Ponette Q., André, F. 2001. Regional scale effects of base cation fertilization on Norway spruce and European beech stands situated on acid brown soils: soil and foliar chemistry. Annals of Forest Science, 58, 699– 712.
  • Reuss J.O., Johnson D.W. 1986. Acid deposition and the acidification of soils and water. Ecological Studies, 59, 1– 120.
  • Sicard P., Coddeville P., Sauvage S., Galloo J.C. 2007. Trends in chemical composition of wet-only precipitation at rural French monitoring stations over the 1990– 2003 period. Water, Air and Soil Pollution, 7, 49– 58.
  • Staszewski T., Godzik S., Kubiesa P., Szdzuj J. 1999. Fate of nitrogen compounds deposited to spruce (Picea abies Karst.) and pine (Pinus silvestris L.) forests located in different air pollution and climatic conditions. Water, Air and Soil Pollution, 116, 121– 127.
  • Sverdrup H., Warfvinge P. 1993. The effect of soil acidification on the growth of trees, grass, herbs and expressed by the (Ca+Mg+K):Al ratio. Reports in Environmental Engineering and Ecology 2, Lund University.
  • Ulrich B. 1983. Soil acidity and its relation to acid deposition. In: Effects of Accumulation of Air Pollutants in Forest Ecosystems (eds.: B. Ulrich, J. Pankrath). D. Reidel Publishing Company, Dordrecht, 127– 146.
  • Ulrich B. 1988. Ökochemischen Kennwerte des Bodens. Zeitschrift für Pflanzenernahrung und Bodenkunde, 157, 171– 176.
  • Van Breemen N., Van Dijk H.F.G. 1987. Ecosystem effect of atmospheric deposition of nitrogen in the Netherlands. Environmental Pollution, 54, 249– 274.
  • Zwoliński J. 2003. Ocena zagrożenia lasów świerkowych w Beskidzie Śląskim przez zanieczyszczenia powietrza atmosferycznego. Prace Instytutu Badawczego Leśnictwa Ser. A, 1 (951), 53– 68.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-3683b381-3305-49ec-888f-5ecda7ad844a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.