PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 25 | Special Issue S1 |

Tytuł artykułu

Testing contraction and thermal expansion coefficient of construction and moulding polymer composites

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The paper presents results of systematic tests of contraction and thermal expansion coefficients of materials based on polymer composites. The information on the above material properties is essential both at the design stage and during the use of finished products. Components for the samples were selected in such a way as to represent typical materials used for production of construction and moulding elements. The performed tests made it possible to monitor the analysed parameters at different stages of the technological process

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Opis fizyczny

p.151-158,fig.,ref.

Twórcy

autor
  • Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland

Bibliografia

  • 1. Marsh G.: 50 years of reinforced plastic boats. Reinforced Plastics, 50(9), 2006, pp. 16-19. doi: 10.1016/S0034-3617(06)71125-0.
  • 2. Neser G.: Polymer based composites in marine use: history and future trends. Procedia Engineering, 194, 2017, pp. 19-24. doi: 10.1016/j.proeng.2017.08.111.
  • 3. Mouritz A.P., Gellert E., Burchill P., Challis K.: Review of advanced composite structures for naval ships and submarines. Composite Structures 53(1), 2001, pp. 21-41. doi: 10.1016/s0263-8223(00)00175-6.
  • 4. Bakis C.E., Bank L.C., Brown V.L., Cosenza E., Davalos J.F., Lesko J.J., Machida A., Rizkalla S.H. Triantafillou T.C.: Fiber-reinforced polymer composites for construction-state-of-the-art review, Journal of Composites for Construction, 6(2), 2002, pp. 73-87. doi: 10.1061/(asce)1090-0268(2002)6:2(73).
  • 5. Manalo A., Aravinthan T., Fam A., Benmokrane B.: State-of-the-art review on FRP sandwich systems for lightweight civil infrastructure, Journal of Composites for Construction, 21(1), 2016, pp. 1-43. doi: 10.1061/(asce)cc.1943-5614.0000729.
  • 6. Mazurkiewicz Ł., Małachowski J., Tomaszewski M., Baranowski P., Yukhymets, P.: Performance of steel pipe reinforced with composite sleeve, Composite Structures, 183, 2018, pp. 199-211. doi: 10.1016/j.compstruct.2017.02.032.
  • 7. Gołaś J., Podhorecki A., Jarząb M.: Vibrations of composite fibre-reinforced beam induced by inertialess moving load, Shell Structures: Theory and Applications. - Vol. 2/ ed. W. Pietraszkiewicz, I. Kreja, London: CRC Press/Balkema, 2010, pp. 167-170. doi: 10.1201/9780203859766.ch35.
  • 8. Reuterlöv S.: Cost effective infusion of sandwich composites for marine applications, Reinforced Plastics, 46(12), 2002, pp. 30-32. doi: 10.1016/s0034-3617(02)80224-7.
  • 9. Summerscales J., Searle T.J.: Low-pressure (vacuum infusion) techniques for moulding large composite structures, Proceedings of the Institution of Mechanical Engineers Part L Journal of Materials Design and Applications, 219(1), 2005, pp. 45-58. doi: 10.1243/146442005x10238.
  • 10. Choi H.K., Nam K.W., Ahn S.H.: Strength characteristics of FRP composite materials for ship structure, Journal of Ocean Engineering and Technology, 27(4), 2013, pp. 45-54. doi: 10.5574/ksoe.2013.27.4.045.
  • 11. Chróścielewski J., Miśkiewicz M., Pyrzowski Ł., Wilde K.: Composite GFRP U-shaped footbridge, Polish Maritime Research, 24(s1), 2017, pp. 25-31. doi: 10.1515/pomr-2017-0017. POLISH MARITIME RESEARCH, No S1/2018157
  • 12. Miśkiewicz M., Okraszewska R., Pyrzowski Ł.: Composite footbridge – synergy effect in cooperation between universities and industry. ICERI2014: 7th International Conference of Education, Research and Innovation, ICERI Proceedings, 2014, pp. 2897-2903.
  • 13. Pyrzowski Ł., Miśkiewicz M.: Application of foam made of post-consumer pet materials for the construction of footbridges, 17th International Multidisciplinary Scientific GeoConference SGEM 2017, Vol. 17, Issue 62, pp. 9-16. doi: 10.5593/sgem2017/62/s26.002.
  • 14. Pyrzowski Ł., Sobczyk B., Witkowski W., Chróścielewski J.: Three-point bending test of sandwich beams supporting the GFRP footbridge design process validation. 3rd Polish Congress of Mechanics (PCM) / 21st International Conference on Computer Methods in Mechanics (CMM), 2016, Taylor & Francis Group, London, pp. 489-492. doi: 10.1201/b20057-104.
  • 15. Miśkiewicz M., Daszkiewicz K., Ferenc T., Witkowski W. , C h r ó ś c i e l e w s k i J . : Experimental tests and numerical simulations of full scale composite sandwich segment of a foot-and-cycle bridge. Advances in Mechanics: Theoretical, Computational and Interdisciplinary Issues – Kleiber et al. (Eds), Taylor & Francis Group, London, 2016, pp. 401-404. doi: 10.1201/b20057-86.
  • 16. Chróścielewski J., Miśkiewicz M., Pyrzowski Ł., Sobczyk B., Wilde K.: A novel sandwich footbridge - Practical application of laminated composites in bridge design and in situ measurements of static response. Composites Part B: Engineering, 126, 2017, pp. 153-161. doi: 10.1016/j.compositesb.2017.06.009.
  • 17. Pyrzowski Ł., Sobczyk B., Rucka M., Miśkiewicz M., Chróścielewski J.: Composite sandwich footbridge - measured dynamic response vs. FEA. Shell Structures: Theory and Applications. - Vol. 4/ ed. W. Pietraszkiewicz, W. Witkowski, Leiden: CRC Press/Balkema, 2018, pp. 457-460.
  • 18. Pyrzowski Ł., Miśkiewicz M., Chróścielewski J.: Load testing of GFRP composite U-shape footbridge, IOP Conference Series: Materials Science and Engineering, 245, 2017. doi: 10.1088/1757-899X/245/3/032050.
  • 19. Wilde K., Miśkiewicz M., Chróścielewski J.: SHM System of the Roof Structure of Sports Arena „Olivia”, Structural Health Monitoring 2013, Vol. II, pp. 1745-1752.
  • 20. Kaminski W., Makowska K., Miśkiewicz M., Szulwic J., Wilde K.: System of monitoring of the Forest Opera in Sopot structure and roofing, 15th International Multidisciplinary Scientific GeoConference SGEM 2015, Book 2 Vol. 2, pp. 471-482. doi: 10.5593/SGEM2015/B22/S9.059.
  • 21. Mariak A., Miśkiewicz M, Meronk B., Pyrzowski Ł., Wilde K.: Reference FEM model for SHM system of cable-stayed bridge in Rzeszów, Advances in Mechanics: Theoretical, Computational and Interdisciplinary Issues, 2016, pp. 383-387. doi:10.1201/b20057-82.
  • 22. Miśkiewicz M., Pyrzowski Ł., Wilde K., Mitrosz O.: Technical monitoring system for a new part of Gdańsk Deepwater Container Terminal, Polish Maritime Research, 24(s1), 2017, pp. 149-155. doi: 10.1515/pomr-2017-0033.
  • 23. Miśkiewicz M., Mitrosz O., Brzozowski T.: Preliminary field tests and long-term monitoring as a method of design risk mitigation: a case study of Gdańsk Deepwater Container Te r m i n a l. Polish Maritime Research, 24(3), 2017, pp. 106-114, doi: 10.1515/pomr-2017- 0095.
  • 24. Miśkiewicz M., Meronk B., Brzozowski T., Wilde K.: Monitoring system of the road embankment, Baltic Journal of Roads and Bridge Engineering, 12(4), 2017, pp. 218-224. doi: 10.3846/bjrbe.2017.27.
  • 25. Miśkiewicz M., Pyrzowski Ł., Chróścielewski J., Wilde K.: Structural Health Monitoring of Composite Shell Footbridge for Its Design Validation, Proceedings 2016 Baltic Geodetic Congress (Geomatics)/ ed. Juan E. Guerrero Los Alamitos: IEEE Computer Society Order Number E5972, 2016, pp. 228-233. doi: 10.1109/bgc.geomatics.2016.48.
  • 26. Nawab Y., Shahid S., Boyard N., Jacquemin F.: Chemical shrinkage characterization techniques for thermoset resins and associated composites. Journal of Materials Science, 48(16), 2013, pp. 5387-5409. doi: 10.1007/s10853-013-7333-6.
  • 27. Schoch K.F., Panackal P.A., Frank P.P.: Real-time measurement of resin shrinkage during cure. Thermochimica Acta, 417, 2004, pp. 115-118. doi: 10.1016/j.tca.2003.12.027.
  • 28. Shah D.U., Schubel P.J.: Evaluation of cure shrinkage measurement techniques for thermosetting resins. Polymer Testing, 29, 2010, pp. 629-663. doi: 10.1016/j.polymertesting. 2010.05.001.
  • 29. Huang Y.J., Liang C.M.: Volume shrinkage characteristics in the cure of low-shrink unsaturated polyester resins. Polymer, 37(3), 1996, pp. 401-412. doi: 10.1016/0032-3861(96)82909-0.
  • 30. Nawab Y., Jacquemin F., Casari P., Boyard N., Sobotka V.:Evolution of chemical and thermal curvatures in thermoset-laminated composite plates during the fabrication process. Journal of Composite Materials, 47(3), 2010, pp. 327-339. doi: 10.1177/0021998312440130.
  • 31. Casari P., Gornet L.: Characterization of residual stresses in a composite curved sandwich beam, Composites: Part A, 37(4), 2006, pp. 672-678. doi: 10.1016/j.compositesa.2005.05.020.
  • 32. White S.R., Hahn H.T.: Process modeling of composite materials: residual stress development during cure. Part II. Experimental validation. Journal of Composite Materials, 26(16), 1992, pp. 2423-2453. doi: 10.1177/002199839202601605.
  • 33. Janowski A., Nagrodzka-Godycka K., Szulwic J., Ziółkowski P. : Remote sensing and photogrammetry techniques in diagnostics of concrete structures. Computers and Concrete, 18(3), 2016, pp. 405-420. doi: 10.12989/cac.2016.18.3.405.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3665fe89-a7bf-42e3-b9f0-44dc825b92c8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.