Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 25 | 4 |
Tytuł artykułu

Dynamically positioned ship stering making use of backstepping method and artificial neutral networks

Treść / Zawartość
Warianty tytułu
Języki publikacji
The article discusses the issue of designing a dynamic ship positioning system making use of the adaptive vectorial backstepping method and RBF type artificial neural networks. In the article, the backstepping controller is used to determine control laws and neural network weight adaptation laws. The artificial neural network is applied at each time instant to approximate nonlinear functions containing parametric uncertainties. The proposed control system does not require precise knowledge of the model of ship dynamics and external disturbances, it also eliminates the problem of analytical determination of the regression matrix when designing the control law with the aid of the adaptive backstepping procedure
Słowa kluczowe
Opis fizyczny
  • Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
  • Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
  • 1. Boulkroune, A., N. Bounar, M. M’Saad, M. Farza: Indirect adaptive fuzzy control scheme based on observer for nonlinear systems: A novel SPR-filter approach, Neurocomputing. 135, 2014 pp. 378–387
  • 2. Buhmann, M.D.: Radial basis functions: theory and implementations, Cambridge University Press 2003
  • 3. Chan, A.K., G.A. Becus: Online adaptation of RBF centers for adaptive control, in: Proceedings of 1995 American Control Conference - ACC’95, American Autom Control Council, 1995 pp. 3770–3774
  • 4. Cover, T.M.: Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications in Pattern Recognition, IEEE Transations on Electronic Computers 1965, pp. 326-334
  • 5. Cpałka, K.: Design of Interpretable Fuzzy Systems, Springer 2017
  • 6. Du, J., X. Hu, H. Liu, C.L.P. Chen: Adaptive robust output feedback control for a marine dynamic positioning system based on a high-gain observer, IEEE Transactions on Neural Networks and Learning Systems. 26, 2015 pp. 2775–2786
  • 7. Fossen, T.I., S.P. Berge: Nonlinear vectorial backstepping design for global exponential tracking of marine vessels in the presence of actuator dynamics, in: Proceedings of the 36th IEEE Conference on Decision and Control, IEEE, 1998 pp. 4237–4242
  • 8. Katebi, M.R., M.J. Grimble, Y. Zhang: Hinf robust control design of dynamic ship positioning, Ieee Process Control Theory Applicatron. 144 1997, pp. 110–120
  • 9. Krstić, M., I. Kanellakopoulos, P. Kokotović: Nonlinear and adaptive control design, Wiley 1995
  • 10. Kuczkowski, Ł., R. Śmierzchalski: Path planning algorithm for ship collisions avoidance in environment with changing strategy of dynamic obstacles, in: Springer, Cham 2017: pp. 641–650
  • 11. Kwan, C., F.L. Lewis: Robust backstepping control of nonlinear systems using neural networks, Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on. 30, 2000 pp. 753–766
  • 12. Lisowski, J.: Game control methods in avoidance of ships collisions, Polish Maritime Research. 19 2012, pp. 3–10
  • 13. Lisowski, J., A. Lazarowska: The radar data transmission to computer support system of ship safety, Solid State Phenomena. 196 2013, pp. 95–101
  • 14. Mingyu, F., X. Yujie, Z. Li: Bio-inspired Trajectory Tracking Algorithm for Dynamic Positioning Ship with System Uncertainties, Proceedings of the 35th Chinese Control Conference, 2016 pp. 4562–4566
  • 15. Niksa-Rynkiewicz,T.,Szłapczyński R.: A framework of a ship domain – based near-miss detection method using mamdani neuro-fuzzy classification., Polish Maritime Research, (in review) 2018
  • 16. Orr, M.J.L .: Introduction to Radia l Basis Function Network s 1996
  • 17. Sorensen, A.: A survey of dynamic positioning control systems, Annual Reviews in Control . 35 2011 pp. 123–136
  • 18. Swaroop, D., J.K. Hedrick, P.P. Yip, J.C. Gerdes: Dynamic surface control for a class of nonlinear systems, IEEE Transactions on Automatic Control. 45 2000, pp. 1893–1899.
  • 19. Szczypta, J., A. Przybył, K. Cpałka: Some Aspects of Evolutionary Designing Optimal Controllers, in: Springer, Berlin, Heidelberg 2013 pp. 91–100
  • 20. Szlapczynski, R., J. Szlapczynska: Customized crossover in evolutionar y sets of safe ship trajectories, Internationa l Journal of Applied Mathematics and Computer Science. 22 2012.
  • 21. Tannu r i , E . A . , A .C . A g o s t i n h o , H . M . Mo r i s h i t a , L . Mo r a t e l l i : Dynamic positioning systems: An experimental analysis of sliding mode control, Control Engineering Practice. 18, 2010 pp. 1121–1132
  • 22. Witkowska, A.: Control design for slow speed positioning, Proceedings - 27th European Conference on Modelling and Simulation, ECMS 2013 pp. 198–204
  • 23. Witkowska, A., R. Smierzchalski: Designing a ship cours controller by applying the adaptive backstepping method, Int. J. Appl. Math. Comput. Sci. 22 2012 pp. 985–997.
  • 24. Yang, Y., J. Du, G. Li, W. Li, C. Guo: Dynamic Surface Control for Nonlinear Dynamic Positioning System of Ship, in: Advances in Intelligent and Soft Computing, Springer, Berlin, Heidelberg 2012: pp. 237–244.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.