Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 5 |
Tytuł artykułu

The impact of climate change and human activity on net primary production in Tibet

Warianty tytułu
Języki publikacji
The Tibetan Plateau has faced environmental degradation in recent years due to intensified human activity and climate change. In this study, the dynamics of net primary production (NPP), annual mean temperature (AMT), annual mean precipitation (AMP), number of animals (NA), number of rural laborers (NRL), and animal husbandry (AH) were analyzed and the response of NPP to climate and human activity explored. The results show that NPP was increasing gradually from northwest to southeast and is similar to the distribution of AMP. In addition, NA, NRL, and AH cluster around Lhasa. Moreover, AMP had a negative correlation with NPP in Tibet while AMT has a positive effect on NPP. Moreover, because of the large number of livestock there is a negative relationship between NA and NPP in most Tibetan regions. Furthermore, it was found that human activity made a higher contribution to NPP in Tibet (24.73%) than climate factors (17.28%). It is, therefore, necessary to further explore the relationship between human activity and the vegetation dynamic in the region.
Słowa kluczowe
Opis fizyczny
  • Institute of Mountain Hazards and Environment, Chinese Academy of Science, Chengdu 610041, China
  • University of Chinese Academy of Sciences, Beijing 100049, China
  • Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
  • 3 State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
  • Institute of Mountain Hazards and Environment, Chinese Academy of Science, Chengdu 610041, China
  • 1. GULI-JIAPAE R., LIANG S.L., YI Q.X., LIU J.P. Vegetation dynamics and responses to recent climate change in Xinjiang using leaf area index as an indicator.Ecological Indicators. 58, 64-, 2015.
  • 2. WANG G.X., BAI W., LI N., Hu H. Climate changes and its impact on tundra ecosystem in Qinghai-Tibet Plateau, China. Climatic Change. 106, 463, 2011.
  • 3. LIU J., KANG S., GONG T., LU A. Growth of a highelevation large inland lake, associated with climate change and permafrost degradation in Tibet.Hydrology and Earth System Sciences. 14, 481, 2010.
  • 4. DHITAL D., YASHIRO Y., OHTSUKA T., NODA H., SHIZU Y., KOIZUMI H. Carbon dynamics and budget in a Zoysia japonica grassland, central Japan.Journal of Plant Research. 123 (4), 519, 2010.
  • 5. HAN Q.F., LUO G.P., LI C.F., YE H., CHEN Y.L. Hen. Modeling grassland net primary productivity and wateruse efficiency along an elevational gradient of the Northern Tianshan Mountains.Journal of Arid Land 5 (3), 354, 2013.
  • 6. PIAO S.L., MOHAMMAT A., FANG J.Y., CAI Q., FENG J.M. NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China.Global Environmental Change-Human and Policy Dimensions 16 (4), 340, 2006.
  • 7. COMBOURIEU-NEBOU T., NATHALI E., ADELE BERTIN I., ELDA RUSSO-ERMOL I. Climate changes in the central Mediterranean and Italian vegetation dynamics since the Pliocene.Review of Palaeobotany and Palynology 218, 127, 2015.
  • 8. SUN W.Y., SONG X.Y., MU X.M., GAO P., WANG F., ZHAO G.J. Spatiotemporal vegetation cover variations associated with climate change and ecological restoration in the Loess Plateau.Agricultural and Forest Meteorology. 209-210, 87, 2015.
  • 9. LI H.W., YANG X.P. Temperate dryland vegetation changes under a warming climate and strong human intervention – With a particular reference to the district Xilin Gol, Inner Mongolia, China. CATENA. 119, 9, 2014.
  • 10. WANG J., RICH J.P., PRICE K.P. Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA.Remote Sensing. 24, 2345, 2003.
  • 11. CHU D., LU T., ZHANG T. Zhang.Sensitivity of normalized difference vegetation index (NDVI) to seasonal and interannual climate conditions in the Lhasa area, Tibetan plateau, China.Arctic Antarctic and Alpine Research. 39 (4), 635, 2007.
  • 12. JIAN P., LIU Z.H.,LIU Y.H., WU J.S., HAN Y.N. Trend analysis of vegetation dynamics in Qinghai – Tibet Plateau using Hurst Exponent. Ecological Indicators. 14 (1), 28, 2012.
  • 13. HIROTA M., KAWASA K., HU Q.W., KATO T., TANG Y.H., MO W.H., CAO G.M., MOARIKO S. Net primary productivity and spatial distribution of vegetation in an alpine wetland, Qinghai-Tibetan Plateau.Limnology. 8 (2), 161, 2007.
  • 14. LUO T.X., PAN Y.D., OUYANG H., SHI P.L., LUO J., YU Z.L., LU Q. Leaf area index and net primary productivity along subtropical to alpine gradients in the Tibetan Plateau. Global Ecology and Biogeography. 13 (4), 345, 2004.
  • 15. LUO T.X., LI W.H., ZHU H.Z.Estimated biomass and productivity of natural vegetation on the Tibetan Plateau. Ecological Applications. 12 (4), 980-, 2002.
  • 16. MAO D.H., LUO L., WANG Z.M., ZHANG C.H., REN C.Y. Variations in net primary productivity and its relationships with warming climate in the permafrost zone of the Tibetan Plateau.Journal of Geographical Sciences. 25 (8), 967, 2015.
  • 17. GAO Y.H., ZHOU X., WANG Q., WANG C.Z., ZHAN Z.M., CHEN L.F., YAN J.X., QU R. Vegetation net primary productivity and its response to climate change during 2001-2008 in the Tibetan Plateau.Science of the Total Environment. 444, 356, 2013.
  • 18. KRAMER A., HERZSCHUH U., MISCHKE S., ZHANG C.J. Late Quaternary environmental history of the southeastern Tibetan Plateau inferred from the Lake Naleng non-pollen palynomorph record.Vegetation History and Archaeobotany. 19 (5-6), 453, 2010.
  • 19. MIEHE GEORG., MIEHE SABINE., KAISER KNUT., REUDENBACH CHRISTOPH., BEHRENDES LENA., LA DUO.,SCHLUTZ FRANK. How old is pastoralism in Tibet? An ecological approach to the making of a Tibetan landscape. Palaeogeography Palaeoclimatology Palaeoecology. 276 (1-4), 130, 2009.
  • 20. OMUTO C.T., VARGAS R.R., ALIM M.S., PARON P. Mixed-effects modelling of time series NDVI-rainfall relationship for detecting human-induced loss of vegetation cover in drylands.Journal of Arid Environments. 74 (11), 1552, 2010.
  • 21. GAO Q.Z., WAN Y.F., XU H.M., LI Y., JIANGCUN W.Z., BORJIGIDAI ALMAZ. Alpine grassland degradation index and its response to recent climate variability in Northern Tibet, China.Quaternary International. 226 (1-2), 143, 2010.
  • 22. WU S.H., YIN Y.H., ZHAO D.S., ZHAO M., HUANG M., SHAO X.M., DAI E.F. Impact of future climate change on terrestrial ecosystems in China.International Journal of Climatology. 30 (6), 866, 2010.
  • 23. LI L., YANG S., WANG Z.Y., ZHU X.D., TANG H.Y. Evidence of Warming and Wetting Climate over the Qinghai-Tibet Plateau.Arctic, Antarctic, and Alpine Research. 42, 449, 2010.
  • 24. LIU W., GUO Q.H., WANG Y.X. Temporal-spatial climate change in the last 35 years in Tibet and its geo-environmental consequences.Environ Geol. 54, 1747, 2008.
  • 25. SUN J., CHENG G.W., LI W.P. Meta-analysis of relationships between environmental factors and aboveground biomass in the alpine grassland on the Tibetan Plateau.Biogeosciences. 10 (3), 1707, 2013.
  • 26. ZHANG Y.L., QI W., ZHOU C.P., DING M.J., LIU L.S., GAO J.G., BAI W.Q., WANG Z.F., ZHENG D. Spatial and temporal variability in the net primary production of alpine grassland on the Tibetan Plateau since 1982.Journal of Geographical Sciences. 24 (2), 269, 2014.
  • 27. POST E., FORCHHAMMER M.C., BRET-HARTE M.S., CALLAGHAN T.V., CHRISTENSEN T.R., ELBERLING B., FOX A.D., GILG O., HIK D.S., HOYE T.T., LMS R.A., JEPPESON E., KLEIN D.R., MADSEN J., MCGUIRE A.D., RYSGAARD S., SCHINDLER D.E., STIRLING I., TAMSTORF P., TYLER N.J.C., VAN DER WAL R., WELKER J., WOOKEY P.A., SCHMIDT N.M., AASTRUP P. Ecological Dynamics Across the Arctic Associated with Recent Climate Change. Science. 325 (5946), 1355, 2009.
  • 28. KRAUSMANN F., ERB K.H., GINGRICH S., HABERL H., BONDEAU A., GAUBE V., LAUK C., PLUTZAR C., SEARCHINGER T.D. Global human appropriation of net primary production doubled in the 20th century.Proceedings of the National Academy of Sciences of the United States of America. 110 (25), 10324, 2013.
  • 29. LIU Y.X., WANG Y.L., PENG J., DU Y.Y., LIU X.F., LI S.S., ZHNAG D.H. Correlations between Urbanization and Vegetation Degradation across the World’s Metropolises Using DMSP/OLS Nighttime Light Data.Remote Sensing. 7 (2), 2067, 2015.
  • 30. SUN J., WANG X.D., CHENG G.W., WU J.B., HONG J.T., NIU S.L. Effects of Grazing Regimes on Plant Traits and Soil Nutrients in an Alpine Steppe, Northern Tibetan Plateau. Plos One. 9 (9), 2014.
  • 31. ZEGEYE HAILEAB., TEKETAY DEMEL., KELBESSA ENSERMU. Diversity, regeneration status and socioeconomic importance of the vegetation in the islands of Lake Ziway, south-central Ethiopia.Flora – Morphology, Distribution, Functional Ecology of Plants. 201 (6), 483, 2006.
  • 32. DING M.J., ZHANG Y.L., SUN X.M., LIU L.S., WANG Z.F., BAI W.Q. Spatiotemporal variation in alpine grassland phenology in the Qinghai-Tibetan Plateau from 1999 to 2009. Chinese Science Bulletin. 58 (3), 396, 2013.
  • 33. ZHANG G.L., DONG J.W., ZHANG Y.J., XIAO X.M. Reply to Shen et al., No evidence to show nongrowing season NDVI affects spring phenology trend in the Tibetan Plateau over the last decade.Proceedings of the National Academy of Sciences of the United States of America. 110 (26), E2330, 2013.
  • 34. ZHANG W.X., MILLER P.A., SMITH B., WANIA R., KOENIGK T., DOSCHER R. Tundra shrubification and treeline advance amplify arctic climate warming: results from an individual-based dynamic vegetation model. Environmental Research Letters. 8 (3), 2013.
  • 35. TIAN H.J., GAO C.X., CHEN W., BAO S.N., YANG B., MYNENI RANGA B. Response of vegetation activity dynamic to climatic change and ecological restoration programs in Inner Mongolia from 2000 to 2012. Ecological Engineering. 82, 276, 2015.
  • 36. REVELLES J., CHO S., IRIARTE E., BURJACHS F., VAN GEEL B., PALOMO A., PIQUE R., PENA-CHOCARRO L., TERRADAS X. Mid-Holocene vegetation history and Neolithic land-use in the Lake Banyoles area (Girona, Spain). Palaeogeography, Palaeoclimatology, Palaeoecology. 435, 70, 2015.
  • 37. VAN DER LINDEN M., VICKERY E., CHARMAN DAN J., BROEKENS P., VAN GEEL B. Vegetation history and human impact during the last 300 years recorded in a German peat deposit.Review of Palaeobotany and Palynology. 152 (3-4), 158, 2008.
  • 38. WANG J., WANG K.L., ZHANG M.Y., ZHANG C.H. Impacts of climate change and human activities on vegetation cover in hilly southern China. Ecological Engineering. 81, 451, 2015.
  • 39. ZHANG H., WANG Z.F., ZHANG Y.L., DING M.J., LI L.H. Identification of traffic-related metals and the effects of different environments on their enrichment in roadside soils along the Qinghai – Tibet highway. Science of The Total Environment. 521-522, 160, 2015.
  • 40. SHEVYRNOGOV A., VYSOTSKAYA G., SUKHININ A.,FROLIKOVA O., TCHERNETSKY M. Results of analysis of human impact on environment using the time series of vegetation satellite images around large industrial centers. Advances in Space Research. 41 (1), 36-, 2008
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.