PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 79 | 3 |

Tytuł artykułu

Anodal transcranial direct current stimulation with monopolar pulses improves limb use after stroke by enhancing inter‑hemispheric coherence

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Post‑stroke neurological deficits, such as sensorimotor impairments, are often permanent and a leading cause of disability. Stroke is also associated with changes in neuronal synchrony among different brain areas. Multiple studies demonstrated that non‑invasive brain stimulation, such as transcranial direct current stimulation (tDCS), enhances the efficacy of existing rehabilitative therapies. We hypothesized that the therapeutic effects of tDCS could be due to its influence on neuronal synchrony. To study this, we recorded local field potentials in rats treated with anodal tDCS (a‑tDCS) after unilateral ischemic motor cortex lesion. To enhance the effect of a‑tDCS on neuronal synchrony, we added monopolar pulses (a‑tDCSmp) during a treatment. We found that ischemic lesions reduced interhemispheric coherence in the low gamma frequency range. By contrast, a‑tDCSmp treatment increased interhemispheric coherence along with motor improvement in a skilled reaching task. These observations indicate that increased neuronal coherence is a likely mechanism by which tDCS improves stroke recovery. Moreover, this work adds to previous evidence that measures of brain coherence could be used as a biomarker of stroke recovery, which may help in the design of more effective tDCS protocols for stroke rehabilitation.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

79

Numer

3

Opis fizyczny

p.290-301,fig.,ref.

Twórcy

  • Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Canada
  • Krembil Research Institute, Toronto Western Hospital, Toronto, Canada
autor
  • Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Canada
autor
  • Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Canada
autor
  • Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Canada

Bibliografia

  • Adkins DL, Bury SD, Jones TA (2002) Laminar‑dependent dendritic spine alterations in the motor cortex of adult rats following callosal transection and forced forelimb use. Neurobiol Learn Mem 78: 35–52.
  • Adkins DL, Hsu JE, Jones TA (2008) Motor cortical stimulation promotes synaptic plasticity and behavioral improvements following sensorimotor cortex lesions. Exp Neurol 212: 14–28.
  • Alaverdashvili M, Whishaw IQ (2010) Compensation aids skilled reaching in aging and in recovery from forelimb motor cortex stroke in the rat. Neuroscience 167: 21–30.
  • Alsharidah M, Al‑Hussain F, Iqbal M, Hamza A, Yoo W, Bashir S (2018) The effect of transcranial direct current stimulation combined with functional task training on motor recovery in stroke patients. Eur Rev Med Pharmacol Sci 22: 7385–7392.
  • Aparício LV, Guarienti F, Razza LB, Carvalho AF, Fregni F, Brunoni AR (2016) A systematic review on the acceptability and tolerability of transcranial direct current stimulation treatment in neuropsychiatry trials. Brain Stimul 9: 671–681.
  • Barker‑Collo SL, Feigin VL, Lawes CM, Parag V, Senior H (2011) Attention deficits after incident stroke in the acute period: frequency across types of attention and relationships to patient characteristics and functional outcomes. Top Stroke Rehabil 17: 463–476.
  • Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, Isasi CR, Jiménez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Mackey RH, Matsushita K, Mozaffarian D, Mussolino  ME, Nasir K, Neumar RW, Palaniappan  L, Pandey DK, Thiagarajan RR, Reeves MJ, Ritchey  M, Rodriguez  CJ, Roth GA, Rosamond WD, Sasson C, Towfighi A, Tsao CW, Turner MB, Virani SS, Voeks JH, Willey JZ, Wilkins JT, Wu JH, Alger HM, Wong SS, Muntner P; American Heart Association Statistics Committee and Stroke Statistics Subcommittee (2017) Heart disease and stroke statistics‑2017 update: a report from the American Heart Association. Circulation 135: e146‑e603.
  • Bermudez Contreras EJ, Schjetnan AG, Muhammad A, Bartho P, McNaughton BL, Kolb B, Gruber AJ, Luczak A (2013) Formation and reverberation of sequential neural activity patterns evoked by sensory stimulation are enhanced during cortical desynchronization. Neuron 79: 555–566.
  • Bikson  M, Grossman P, Thomas C, Zannou AL, Jiang J, Adnan T, Mourdoukoutas AP, Kronberg G, Truong D, Boggio P (2016) Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimul 9: 641–661.
  • Boonzaier J, van Tilborg GA, Neggers SF, Dijkhuizen RM (2018) Noninvasive brain stimulation to enhance functional recovery after stroke: studies in animal models. Neurorehabilitation Neural Repair 32: 927–940.
  • Buckner RL, Corbetta M, Schatz J, Raichle ME, Petersen SE (1996) Preserved speech abilities and compensation following prefrontal damage. Proc Natl Acad Sci U S A 93: 1249–1253.
  • Chi RP, Snyder AW (2011) Facilitate insight by non‑invasive brain stimulation. PLoS One 6: e16655.
  • Choo PL, Gallagher HL, Morris J, Pomeroy VM, van Wijck F (2015) Correlations between arm motor behavior and brain function following bilateral arm training after stroke: a systematic review. Brain Behav 5: e00411.
  • Coupar F, Pollock A, van Wijck F, Morris J, Langhorne P (2010) Simultaneous bilateral training for improving arm function after stroke. Cochrane Database Syst Rev: CD006432.
  • Crofts JJ, Higham DJ (2009) A weighted communicability measure applied to complex brain networks. J R Soc Interface 6: 411–414.
  • Debener S, Herrmann CS, Kranczioch C, Gembris D, Engel AK (2003) Top‑down attentional processing enhances auditory evoked gamma band activity. Neuroreport 14: 683–686.
  • Faraji J, Gomez‑Palacio‑Schjetnan A, Luczak A, Metz GA (2013) Beyond the silence: bilateral somatosensory stimulation enhances skilled movement quality and neural density in intact behaving rats. Behav Brain Res 253: 78–89.
  • Floel A, Cohen LG (2010) Recovery of function in humans: cortical stimulation and pharmacological treatments after stroke. Neurobiol Dis 37: 243–251.
  • Fox D (2011) Neuroscience: Brain buzz. Nature 472: 156–158. Fox MD, Buckner RL, Liu H, Chakravarty MM, Lozano AM, Pascual‑Leone A (2014) Resting‑state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases. Proc Natl Acad Sci 111: E4367‑E4375.
  • Fritsch B, Reis J, Martinowich K, Schambra HM, Ji Y, Cohen LG, Lu B (2010) Direct current stimulation promotes BDNF‑dependent synaptic plasticity: potential implications for motor learning. Neuron 66: 198–204.
  • Gall C, Silvennoinen K, Granata G, de Rossi F, Vecchio F, Brösel D, Bola M, Sailer M, Waleszczyk WJ, Rossini PM (2015) Non‑invasive electric current stimulation for restoration of vision after unilateral occipital stroke. Contemp Clin Trials 43: 231–236.
  • Gellner AK, Reis J, Fritsch B (2016) Glia: a neglected player in non‑invasive direct current brain stimulation. Front Cell Neurosci 10: 188.
  • Gerloff C, Bushara K, Sailer A, Wassermann EM, Chen R, Matsuoka T, Waldvogel D, Wittenberg GF, Ishii K, Cohen LG, Hallett M (2006) Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain 129: 791–808.
  • Gladwin TE, den Uyl TE, Fregni FF, Wiers RW (2012) Enhancement of selective attention by tDCS: interaction with interference in a Sternberg task. Neurosci Lett 512: 33–37.
  • Gomez Palacio Schjetnan A, Faraji J, Metz GA, Tatsuno M, Luczak A (2013) Transcranial direct current stimulation in stroke rehabilitation: a review of recent advancements. Stroke Res Treat 2013: 170256.
  • Gonzalez Andino SL, Michel CM, Thut G, Landis T, Grave de Peralta R (2005) Prediction of response speed by anticipatory high‑frequency (gamma band) oscillations in the human brain. Hum Brain Mapp 24: 50–58.
  • Harris KD, Thiele A (2011) Cortical state and attention. Nat Revi Neurosci 12: 509–523.
  • Herrmann CS, Frund I, Lenz D (2009) Human gamma‑band activity: a review on cognitive and behavioral correlates and network models. Neurosci Biobehav Rev 34: 981–992.
  • Jackson MP, Bikson M, Liebetanz D, Nitsche M (2017) How to consider animal data in tDCS safety standards. Brain Stimul 10: 1141.
  • Jacobson  L, Koslowsky  M, Lavidor  M (2012) tDCS polarity effects in motor and cognitive domains: a meta‑analytical review. Exp Brain Res 216: 1–10.
  • Javadi AH, Walsh V (2011) Transcranial direct current stimulation (tDCS) of the left dorsolateral prefrontal cortex modulates declarative memory. Brain Stimul 5: 231–241.
  • Joundi RA, Jenkinson N, Brittain JS, Aziz TZ, Brown P (2012) Driving oscillatory activity in the human cortex enhances motor performance. Curr Biol 22: 403–407.
  • Kaiser J, Lutzenberger W, Decker C, Wibral M, Rahm B (2009) Task‑ and performance‑related modulation of domain‑specific auditory short‑term memory representations in the gamma‑band. Neuroimage 46: 1127–1136.
  • Karl JM, Alaverdashvili M, Cross A, Whishaw I (2010) Thinning, movement, and volume loss of residual cortical tissue occurs after stroke in the adult rat as identified by histological and magnetic resonance imaging analysis. Neuroscience 170: 123–137.
  • Kawano T, Hattori N, Uno Y, Kitajo K, Hatakenaka M, Yagura H, Fujimoto H, Yoshioka T, Nagasako M, Otomune H (2017) Large‑scale phase synchrony reflects clinical status after stroke: An EEG study. Neurorehabil Neural Repair 31: 561–570.
  • Kawano T, Hattori N, Hatakenaka M, Uno Y, Yagura H, Fujimoto H, Yoshioka T, Nagasako  M, Otomune H, Kitajo K (2018) Comparison of EEG Synchrony Measures for Post‑Stroke Neurorehabilitation. In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp 35–38: IEEE.
  • Knieling M, Metz G, Antonow‑Schlorke I, Witte O (2009) Enriched environment promotes efficiency of compensatory movements after cerebral ischemia in rats. Neuroscience 163: 759–769.
  • Koo H, Kim MS, Han SW, Paulus  W, Nitche MA, Kim YH, Kim HI, Ko SH, Shin YI (2016) After‑effects of anodal transcranial direct current stimulation on the excitability of the motor cortex in rats. Restor Neurol Neurosci 34: 859–868.
  • Kronberg G, Bridi M, Abel T, Bikson M, Parra LC (2017) Direct current stimulation modulates LTP and LTD: activity dependence and dendritic effects. Brain Stimul 10: 51–58.
  • Lefebvre S, Liew SL (2017) Anatomical parameters of tDCS to modulate the motor system after stroke: a review. Front Neurol 8: 29.
  • Lefebvre S, Dricot L, Laloux P, Desfontaines P, Evrard F, Peeters A, Jamart J, Vandermeeren Y (2017) Increased functional connectivity one  week after motor learning and tDCS in stroke patients. Neuroscience 340: 424–435.
  • Liebetanz D, Nitsche MA, Tergau F, Paulus W (2002) Pharmacological approach to the mechanisms of transcranial DC‑stimulation‑induced after‑effects of human motor cortex excitability. Brain 125: 2238–2247.
  • Lim DH, LeDue JM, Mohajerani MH, Murphy TH (2014) Optogenetic mapping after stroke reveals network‑wide scaling of functional connections and heterogeneous recovery of the peri‑infarct. J  Neurosci 34: 16455–16466.
  • Luczak A, Barthó P (2012) Consistent sequential activity across diverse forms of UP states under ketamine anesthesia. Eur J  Neurosci 36: 2830–2838.
  • Luczak A, Barthó P, Harris KD (2009) Spontaneous events outline the realm of possible sensory responses in neocortical populations. Neuron 62: 413–425.
  • Luczak A, Bartho P, Harris KD (2013) Gating of sensory input by spontaneous cortical activity. J Neurosci 33: 1684–1695.
  • Luczak A, McNaughton BL, Harris KD (2015) Packet‑based communication in the cortex. Nat Rev Neurosci 16: 745–755.
  • Luczak A, Barthó P, Marguet SL, Buzsáki G, Harris KD (2007) Sequential structure of neocortical spontaneous activity in vivo. Proceedings of the National Academy of Sciences 104: 347–352.
  • Metz GA, Whishaw IQ (2000) Skilled reaching an action pattern: stability in rat (Rattus norvegicus) grasping movements as a function of changing food pellet size. Behav Brain Res 116: 111–122.
  • Metz GA, Antonow‑Schlorke I, Witte OW (2005) Motor improvements after focal cortical ischemia in adult rats are mediated by compensatory mechanisms. Behav Brain Res 162: 71–82.
  • Muehlschlegel S, Selb J, Patel M, Diamond SG, Franceschini MA, Sorensen AG, Boas DA, Schwamm LH (2009) Feasibility of NIRS in the neurointensive care unit: a pilot study in stroke using physiological oscillations. Neurocrit Care 11: 288–295.
  • Murphy TH, Corbett D (2009) Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci 10: 861–872.
  • Nitsche M, Doemkes S, Karakose T, Antal A, Liebetanz D, Lang N, Tergau F, Paulus W (2007) Shaping the effects of transcranial direct current stimulation of the human motor cortex. J Neurophysiol 97: 3109–3117.
  • Nitsche MA, Liebetanz D, Antal A, Lang N, Tergau F, Paulus  W (2003) Modulation of cortical excitability by weak direct current stimulation‑technical, safety and functional aspects. Suppl Clin Neurophysiol 56: 255–276.
  • Paxinos G, Watson A (1998) The rat brain: in stereotaxic coordinates., 4th Edition Edition. San Diego: Academic Press.
  • Pellegrino G, Tomasevic  L, Tombini  M, Assenza G, Bravi  M, Sterzi S, Giacobbe  V, Zollo  L, Guglielmelli E, Cavallo G (2012) Inter‑hemispheric coupling changes associate with motor improvements after robotic stroke rehabilitation. Restor Neurol Neurosci 30: 497–510.
  • Rabiner LR, Gold B (1975) Theory and Application of Digital Signal Processing. Englewood Cliffs, NJ Prentice‑Hall, Inc. Reato D, Bikson M, Parra LC (2014) Lasting modulation of in vitro oscillatory activity with weak direct current stimulation. J Neurophysiol 113: 1334–1341.
  • Reis J, Fritsch B (2011) Modulation of motor performance and motor learning by transcranial direct current stimulation. Curr Opin Neurol 24: 590–596.
  • Roe JM, Nesheim M, Mathiesen NC, Moberget T, Alnaes D, Sneve MH (2016) The effects of tDCS upon sustained visual attention are dependent on cognitive load. Neuropsychologia 80: 1–8.
  • Roy A, Baxter B, He B (2014) High‑definition transcranial direct current stimulation induces both acute and persistent changes in broadband cortical synchronization: a  simultaneous tDCS‑EEG study. IEEE Trans Biomed Eng 61: 1967–1978.
  • Roy LB, Sparing R, Fink GR, Hesse MD (2015) Modulation of attention functions by anodal tDCS on right PPC. Neuropsychologia 74: 96–107.
  • Schjetnan AG, Luczak A (2011) Recording large‑scale neuronal ensembles with silicon probes in the anesthetized rat. J Vis Exp 56: e3282.
  • Schoffelen JM, Poort J, Oostenveld R, Fries P (2011) Selective movement preparation is subserved by selective increases in corticomuscular gamma‑band coherence. J Neurosci 31: 6750–6758.
  • Sehm B, Kipping J, Schafer A, Villringer A, Ragert P (2013) A Comparison between uni‑ and bilateral tDCS effects on functional connectivity of the human motor cortex. Front Hum Neurosci 7: 183.
  • Strens LH, Asselman P, Pogosyan A, Loukas C, Thompson AJ, Brown P (2004) Corticocortical coupling in chronic stroke: its relevance to recovery. Neurology 63: 475–484.
  • Suppa A, Berardelli A (2011) Functional connectivity between non‑primary motor cortex and primary motor and sensory areas investigated in humans with TDCS and rTMS. Clin Neurophysiol 122: 643–644.
  • Tanaka S, Takeda K, Otaka Y, Kita K, Osu R, Honda  M, Sadato N, Hanakawa  T, Watanabe K (2011) Single session of transcranial direct current stimulation transiently increases knee extensor force in patients with hemiparetic stroke. Neurorehabil Neural Repair 25: 565–569.
  • Teskey GC, Flynn C, Goertzen CD, Monfils MH, Young NA (2003) Cortical stimulation improves skilled forelimb use following a focal ischemic infarct in the rat. Neurol Res 25: 794–800.
  • Ukueberuwa D, Wassermann EM (2010) Direct current brain polarization: a simple, noninvasive technique for human neuromodulation. Neuromodulation 13: 168–173.
  • Utz KS, Dimova  V, Oppenlander K, Kerkhoff G (2010) Electrified minds: transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation (GVS) as methods of non‑invasive brain stimulation in neuropsychology ‑ a review of current data and future implications. Neuropsychologia 48: 2789–2810.
  • van Meer MP, Otte WM, van der Marel K, Nijboer CH, Kavelaars A, van der Sprenkel JWB, Viergever MA, Dijkhuizen RM (2012) Extent of bilateral neuronal network reorganization and functional recovery in relation to stroke severity. J Neurosci 32: 4495–4507.
  • van Meer MP, van der Marel K, Wang K, Otte WM, El Bouazati S, Roeling TA, Viergever MA, Berkelbach van der Sprenkel JW, Dijkhuizen RM (2010) Recovery of sensorimotor function after experimental stroke correlates with restoration of resting‑state interhemispheric functional connectivity. J Neurosci 30: 3964–3972.
  • Wang L, Yu C, Chen H, Qin W, He Y, Fan F, Zhang Y, Wang M, Li K, Zang Y, Woodward TS, Zhu C (2010) Dynamic functional reorganization of the motor execution network after stroke. Brain 133: 1224–1238.
  • Westlake KP, Nagarajan SS (2011) Functional connectivity in relation to motor performance and recovery after stroke. Front Syst Neurosci 5: 8.
  • Whishaw IQ, Pellis SM (1990) The structure of skilled forelimb reaching in the rat: a proximally driven movement with a single distal rotatory component. Behav Brain Res 41: 49–59.
  • Winship IR, Murphy TH (2009) Remapping the somatosensory cortex after stroke: insight from imaging the synapse to network. Neuroscientist 15: 507–524.
  • Womelsdorf T, Fries P, Mitra PP, Desimone R (2006) Gamma‑band synchronization in visual cortex predicts speed of change detection. Nature 439: 733–736.
  • Wróbel A, Bekisz  M, Kublik E, Waleszczyk  W (1994) 20  Hz bursting beta activity in the cortico‑thalamic system of visually attending cats. Acta Neurobiol Exp 54: 95–107.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-364962c4-5d36-4915-80f3-e90aa4b14e0d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.