Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 63 | 2 |
Tytuł artykułu

Optimization of culture conditions for exopolysaccharide production by a probiotic strain of Lactobacillus rhamnosus E/N

Treść / Zawartość
Warianty tytułu
Języki publikacji
The effects of culture conditions on exopolysaccharides (EPS) production by a probiotic Lb. rhamnosus E/N have been studied using the Plackett-Burman design. Process optimization was performed in stationary cultures to maximize the production of EPS. In order to verify the optimal conditions, an analysis was performed of EPS production in fermentation culture. Batch fermentation was carried outat working volume of 2.5 l. The optimal temperature, pH, carbon source, and nitrogen source conditions were 37°C, pH 5.0, galactose,and yeast extract, respectively. EPS production was improved by 210.28 mg/l in stationary cultures compared to 134.2 mg/l in a control grown on commercial MRS medium. The fermentor experiment showed the possibility of increasing EPS biosynthesis by 175.8%. Our results clearly demonstrate that in the case of Lb. rhamnosus E/N specific culture conditions can enhance EPS production for possible application in the industry.
Słowa kluczowe
Opis fizyczny
  • Department of Biotechnology, Human Nutrition and Science of Food Commodities, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
  • Department of Biotechnology, Human Nutrition and Science of Food Commodities, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
  • Institute of Agrophysies, Polish Academy od Sciences, Lublin, Poland
  • Department of Applied Mathematics and Computer Science, University of Life Sciences in Lublin Lublin, Poland
  • Amrane A. and Y. Pringent. 1998. Influence of yeast extract concentration on batch cultures of Lactobacillus helveticus: Growth and production coupling. World J. Microbiol. Biotechnol. 14: 529–534.
  • Aslim B., Z. Nur Yüksekdağ, Y. Beyatli and N. Mercan. 2005. Exopolysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains under different growth conditions. World J. Microbiol. Biotechnol. 21: 673–677.
  • Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.
  • Cerning J., C.M. Renard, J.F. Thibault, C. Bouillanne and M. Landon. 1994. Carbon source requirements for exopolysaccharide production by Lactobacillus casei CG11 and partial structure analysis of the polymer. Appl. Environ. Microbiol. 60: 3914–3919.
  • Chaari F., A. Kamoun, F. Bhiri, M. Blibech, R. Ellouze-Ghorbel and S. Ellouz-Chaabouni. 2012. Statistical optimization for the production of lichenase by a newly isolated Bacillus licheniformis UEB CF in solid state fermentation using pea pomace as a novel solid support. Industrial Crops and Products 40(1): 192–198.
  • Chen Y., L. Sun, Y. Zeng, L. Wang and L. An. 2006. The production-influencing factors of extracellular polysaccharide (EPS) from a strain of lactic acid bacteria and EPS extraction. Front. Biol. Cina 3: 236–240.
  • de Man J.C., M. Rogosa and E. Sharpe. 1960. A medium for the cultivation of the lactobacilli. J. Appl. Bacteriol. 23: 130–135.
  • De Vuyst L. and B. Degeest. 1999. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol. Rev. 23: 152–177.
  • Degeest B. and L. De Vuyst. 1999. Indication that the nitrogen source influences both amount and size of exopolysaccharides produced by Streptococcus thermophilus LY03 and modeling of the bacterial growth and exopolysaccharide production in a complex medium. Appl. Environ. Microbiol. 65: 2863–2870.
  • Degeest B., B. Janssens and L. De Vuyst. 2001. Exopolysaccharide (EPS) biosynthesis by Lactobacillus sakei 0-1: Production kinetics, enzyme activities and EPS yields. J. Appl. Microbiol. 91: 470–477.
  • Dominguez A., C. Dobre, L.R. Rodrigues, A.M. Peres, D. Torres, I. Rocha, N. Lima and J. Teixeira. 2012. New improved method for fructooligosaccharides production by Aureobasidium pullulans. Carbohydrate Polymers 89(4): 1174–1179.
  • Dubois M., K.A. Gilles, J.K. Hamilton, P.A. Rebers and F. Smith. 1956. Colorimetric method for the determination of sugars and related substances. Anal. Chem. 28: 350–356.
  • Fukuda K., T. Shi, K. Nagami, F. Leo, T. Nakamura, K. Yasuda,A. Senda, H. Motoshima and T. Urashima. 2010. Effects of carbohydrate source on physiological properties of the exopolysaccharide produced by Lactobacillus fermentum TDS030603 in a chemically defined medium. Carbohydrate Polymers 79: 1040–1045.
  • Gamar L., K. Blondeau and J.M. Simonet. 1997. Physiological approach to extracellular polysaccharide production by Lactobacillus rhamnosus strain C83. J. Appl. Microbiol. 83: 281–287.
  • Ghanem N.B., H.H. Yusef and H.K. Mahrouse. 2000. Production of Aspergillus terreus xylanase in solid state cultures: application of the Plackett-Burman experimental design to evaluate nutritional requirements. Biores. Technol. 73: 113–121.
  • Gibson G.R. and M.B. Roberfroid. 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 124: 1401–1412.
  • Grobben G.J., I. Chin-Joe, V.A. Kitzen, I.C. Boels, F. Boer,J. Sikkema, M.R. Smith and J.A.M. De Bont. 1998. Enhancement of exopolysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772 with a simplified defined medium. Appl. Environ. Microbiol. 64: 1333–1337.
  • Grobben G.J., I.C. Boels, J. Sikkema, M. Smith and J.A.M. De Bont. 2000. Influence of ions on growth and production of exopolysaccharides by Lactobacillus delbrueckii ssp. bulgaricus NCFB 2772. J. Dairy Res. 67: 131–135.
  • Ismail B. and K.M. Nampoothiri. 2010. Production, purification and structural characterization of an exopolysaccharide produced by a probiotic Lactobacillus plantarum MTCC 9510. Arch. Microbiol. 192: 1049–1057.
  • Kim Y., U.K. Ji, S. Oh, J.K. Young and H.K. Sae. 2008. Technical optimization of culture conditions for the production of exopolysaccharides (EPS) by Lactobacillus rhamnosus ATCC 9595. Food Sci. Biotechnol. 17(3): 587–593.
  • Kimmel S.A. and R.F. Roberts. 1998. Development of a growth medium suitable for exopolysaccharide production by Lactobacillus delbrueckii ssp. bulgaricus RR. Int. J. Food Microbiol. 40: 87–92.
  • Kitazawa H., T. Harata, J. Uemura, T. Saito, T. Kaneko and T. Itoh.1998. Phosphate group requirement for mitogenic activation of lymphocytes by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii ssp. bulgaricus. Int. J. Food Microbiol. 40: 169–175.
  • Macedo M.G., C. Lacroix and C.P. Champagne. 2002. Combined effect of temperature and medium composition on exopolysaccharide production by Lactobacillus rhamnosus RW-9595M in a whey permeate based medium. Biotechnol. Prog. 18: 167–173.
  • Macedo M.G., C. Lacroix, N.J. Gardner and C.P. Champagne. 2002. Effect of medium supplementation on exopolysaccharide production by Lactobacillus rhamnosus RW-9595M in whey permeate. Int. Dairy J. 12: 419–426.
  • Nagaoka M., S. Hashimoto, T. Watanabe, Y. Teuro and Y. Mori. 1994. Anti-ulcer effects of lactic acid bacteria and their cell wall polysaccharides. Biol. Pharm. Bull. 17: 1012–1017.
  • Ouwehand A.C., V. Kirjavainen, C. Shortt and S. Salminen. 1999. Probiotics: mechanisms and established effects. Int. Dairy J. 9: 43–52.
  • Petry S., S. Furlan, M.J. Crepeau, J. Cerning and M. Desmazeaud.2000. Factors affecting exocellular polysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus grown in a chemically defined medium. Appl. Environ. Microbiol. 66(8): 3427–3431.
  • Raza W., W. Yang, Y. Jun, F. Shakoor, Q. Huang and Q. Shen. 2012. Optimization and characterization of a polysaccharide produced by Pseudomonas fluorescens WR-1 and its antioxidant activity. Carbohydrate Polymers
  • Sánchez J.I., B. Martínez, R. Guillén, R. Jiménez-Díaz andA. Rodríguez. 2006. Culture conditions determine the balance between two different exopolysaccharides produced by Lactobacillus pentosus LPS26. Appl. Environ. Microbiol. 72(12): 7495–7502.
  • Sutherland I.W. 1990. Biotechnology of Microbial Exopolysaccharides. Cambridge University Press, New York.
  • Tomb M. and S.E. Harding. 1998. An introduction to Polysaccharide Biotechnology, pp. 185–205. Taylor and Francis, London, UK.
  • Torino M.I., F. Sesma and G. Font de Valez. 2000. Semidefined media for the exopolysaccharide (EPS) production by Lactobacillus helveticus ATCC 15807 and evaluation of the components interfering with the EPS quantification. Milchwissenschaft 55: 314–316.
  • Torino M.I., E.M. Hébert, F. Mozzi and G.F. de Valdez. 2005. Growth and exopolysaccharide production by Lactobacillus helveticus ATCC 15807 in an adenine-supplemented chemically defined medium. J. Appl. Microbiol. 99: 1123–1129.
  • Welman A.D. and I.S. Maddox. 2003. Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends Biotechnol. 21(6): 269–274.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.