Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 69 | 03 |
Tytuł artykułu

Mechanizmy powstawania oporności bakterii na działanie antybiotyków i środków dezynfekujących

Warianty tytułu
Mechanisms of the emergence of resistance against the action of antibiotics and disinfectants in bacteria
Języki publikacji
The definition of antibiotics and disinfectants (biocides) has been presented. Pre-existence of antimicrobial resistance in bacteria was mentioned. The ability of bacteria to develop antibiotic resistance was characterized. Different mechanisms by which a bacterial population can develop resistance to one antibiotic and simultaneously to several antibiotics have been defined. It was stressed that the most frequent mechanism responsible for the acquisition of antibiotic resistance by a bacterial cell is the occurrence of horizontal gene transfer (HGT) between a resistant bacterial strain and a susceptible one. Remarks concerning the selection of resistant bacteria against one or more antibiotics simultaneously were given. It was concluded that prudent use of antibiotics in veterinary medicine should be obligatory, because reducing the use of these drugs is very important in controlling antibiotic resistance in bacteria, including pathogens. In the second part of the paper the resistance of bacteria to disinfectants was described. It was demonstrated that the mechanisms of bacterial resistance between antibiotics and disinfectants differ: however, similarities also exist. As in case of disinfectants, prudent use was also advised.
Opis fizyczny
  • Państwowy Instytut Weterynaryjny - Państwowy Instytut Badawczy, Al.Partyzantów 57, 24-100 Puławy
  • Państwowy Instytut Weterynaryjny - Państwowy Instytut Badawczy, Al.Partyzantów 57, 24-100 Puławy
  • Państwowy Instytut Weterynaryjny - Państwowy Instytut Badawczy, Al.Partyzantów 57, 24-100 Puławy
  • 1.Acar J., Röstel B.: Antimicrobial resistance: an overview. Rev. sci. tech. Off. int. Epiz. 2001, 20, 797-810.
  • 2.Acar J. F., Moulin G.: Antimicrobial resistance: a complex issue. Rev. sci. tech. Off. int. Epiz. 2012, 31, 23-31.
  • 3.Akiyama T., Savin M. C.: Populations of antibiotic-resistant coliform bacteria change rapidly in a wastewater effluent dominated stream. Sci. Total Environ. 2010, 408, 6192-6201.
  • 4.Baquero F., Martinez J. L., Canton R.: Antibiotics and resistance in water environments. Curr. Opin. Biotechnol. 2008, 19, 260-265.
  • 5.Borges-Walmsley M. I., Walmsley A. R.: The structure and function of drug pumps. Trends Microbiol. 2001, 9, 71-79.
  • 6.Braoudaki M., Hilton A. C.: Mechanisms of resistance in Salmonella enterica adapted to erythromycin, benzalkonium chloride and triclosan. Int. J. Antimicrob. Agents 2005, 25, 31-37.
  • 7.Champlin F. R., Ellison M. L., Bullard J. W., Conrad R. S.: Effect of outer membrane permeabilisation on intrinsic resistance to low triclosan levels in Pseudomonas aeruginosa. Int. J. Antimicrob. Agents 2005, 26, 159-164.
  • 8.Ciric L., Mullany P., Roberts A. P.: Antibiotic and antiseptic resistance genes are linked on a novel mobile genetic element: Tn6087. J. Antimicrob. Chemother. 2011, 66, 2235-2239.
  • 9.Cloete T. E.: Resistance mechanisms of bacteria to antimicrobial compounds.Int. Biodeter. Biodegr. 2003, 51, 277-282.
  • 10.D'Costa V. M., King C. E., Kalan L., Morar M., Sung W. W., Schwarz C., Froese D., Zazula G., Calmels F., Debruyne R., Golding G. B., Poinar H. N., Wright G. D.: Antibiotic resistance is ancient. Nature 2011, 477, 457-461.
  • 11.Davin-Regli A., Pagès J.-M.: Cross-resistance between biocides and antimicrobials: an emerging question. Rev. sci. tech. Off. int. Epiz. 2012, 31, 89-104.
  • 12.Denyer S. P., Maillard J.-Y.: Cellular impermeability and uptake of biocides and antibiotics in Gram-negative bacteria. J. Appl. Microbiol. 2002, 92, 35-45.
  • 13.Guérin-Méchin L., Dubois-Brissonnet F., Heyd B., Leveau J. Y.: Specific variations of fatty acid composition of Pseudomonas aeruginosa ATCC 15442 induced by quaternary ammonium compounds and relation with resistance to bactericidal activity. J. Appl. Microbiol. 1999, 87, 735-742.
  • 14.Hall R. M., Collis C. M.: Mobile gene cassettes and integrons: capture and spread of genes by site-specific recombination. Molec. Microbiol. 1995, 15, 593-600.
  • 15.Hopwood D. A.: How do antibiotic-producing bacteria ensure their self-resistance before antibiotic biosynthesis incapacitates them? Molec. Microbiol. 2007, 63, 937-940.
  • 16.Langsrud S., Sidhu M. S., Heir E., Holck A. L.: Bacterial disinfectant resistance: a challenge for the food industry. Int. Biodeter. Biodegr. 2003, 51, 283-290.
  • 17.Levy S. B.: Active efflux, a common mechanism for biocide and antibiotic resistance. J. Appl. Microbiol. 2002, 92, 65-71.
  • 18.Littlejohn T. G., Paulsen I. P., Gillespie M., Tennent J. M., Midgley M., Jones I. G., Purewal A. S., Skurray R. A.: Substrate specificity and energetics of antiseptic and disinfectant resistance in Staphylococcus aureus. FEMS Microbiol. Lett. 1992, 95, 259-266.
  • 19.Maillard J.-Y.: Bacterial resistance to biocides in the health care environment: should it be of genuine concern? J. Hosp. Infect. 2007, 65, 60-72.
  • 20.Maillard J.-Y.: Bacterial target sites for biocidal action. J. Appl. Microbiol. 2002, 92, 16-27.
  • 21.Marshal B. M., Levy S. B.: Food animals and antimicrobials: impacts on human health. Clin. Microbiol. Rev. 2011, 24, 718-733.
  • 22.Mazel D.: Integrons: agents of bacterial evolution. Nat. Rev. Microbiol. 2006, 4, 608-620.
  • 23.McNeil M. R., Brennan P. J.: Structure, function and biogenesis of the cell envelope of mycobacteria in relation to bacterial physiology, pathogenesis and drug resistance; some thoughts and possibilities arising from recent structural information. Res. Microbiol. 1991, 142, 451-463.
  • 24.Meyer B., Cookson B.: Does microbial resistance or adaptation to biocides create a hazard in infection prevention and control? J. Hosp. Infect. 2010, 76, 200-205.
  • 25.Nikaido H., Pagès J. M.: Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. FEMS Microbiol. Rev. 2012, 36, 340-363.
  • 26.Potron A., Poirel L., Nordmann P.: Origin of OXA-181, an emerging carbapenem-hydrolyzing oxacillinase, as a chromosomal gene in Shewanella xiamenensis. Antimicrob. Agents Chemother. 2011, 55, 4405-4407.
  • 27.Russell A. D.: Antibiotic and biocide resistance in bacteria: comments and conclusion. J. Appl. Microbiol. 2002, 92, 171-173.
  • 28.Russell A. D.: Introduction of biocides into clinical practice and the impact on antibiotic-resistant bacteria. J. Appl. Microbiol. 2002, 92, 121-135.
  • 29.Stokes H. W., Gillings M. R.: Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiol. Rev. 2011, 35, 790-819.
  • 30.Strahilevitz J., Jacoby G. A., Hooper D. C., Robicsek A.: Plasmid-mediated quinolone resistance: a multifaceted threat. Clin. Microbiol. Rev. 2009, 22, 664-689.
  • 31.Tattawasart U., Maillard J.-Y., Furr J. R., Russell A. D.: Development of resistance to chlorhexidine diacetate and cetylpyridinium chloride in Pseudomonas stutzeri and changes in antibiotic susceptibility. J. Hosp. Infect. 1999, 42, 210-229.
  • 32.Thomas L., Russell A. D., Maillard J.-Y.: Antimicrobial activity of chlorhexidine diacetate and benzalkonium chloride against Pseudomonas aeruginosa and its response to biocide residues. J. Appl. Microbiol. 2005, 98, 533-543.
  • 33.Watanabe T.: Episome-mediated transfer of drug resistance in Enterobacteriaceae. J. Bacteriol. 1961, 81, 668-678.
  • 34.Webber M. A., Piddock L. J. V.: The importance of efflux pumps in bacterial antibiotic resistance. J. Antimicrob. Chemother. 2003, 51, 9-11.
  • 35.Wright G. D.: Antibiotic resistance in the environment: a link to the clinic. Curr. Opin. Microbiol. 2010, 13, 589-594.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.