Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 08 |
Tytuł artykułu

Volatilized myrcene inhibits growth and activates defense responses in rice roots

Warianty tytułu
Języki publikacji
We aimed to analyze the phytotoxic effect of the allelopathic volatile myrcene on rice seedlings, particularly root growth, reactive oxygen species (ROS) generation, and activity of antioxidant enzymes and defense-related genes. Myrcene inhibited the growth of rice seedlings. The activity of ROS and lipoxygenase (LOX) was significantly increased with increasing myrcene concentration in roots and that of antioxidant enzymes was altered dose-dependently. The activity of superoxide dismutase and peroxidase was changed at 24 h after myrcene treatment in rice roots. Furthermore, the mRNA expression of three mitogen-activated protein kinase genes (OsMPK2, 3, and 4), WRKY transcription factor gene (OsWRKY71), LOX gene (OsLOX3), pathogenesis- related protein 1b gene (OsPR1b) and cyclindependent protein kinase inhibitor (OsCKI) was upregulated and that of cyclin genes OsCycA1;1, OsCycB1;1 and OsCycD1;1 was downregulated with myrcene treatment in rice roots. These results may provide new insights into the molecular basis of the allelopathic volatile response in plants.
Słowa kluczowe
Opis fizyczny
  • Department of Life Sciences, National Cheng Kung University, No. 1 University Rd., Tainan 701, Taiwan, ROC
  • Institute of Tropical Plant Sciences, National Cheng Kung University, No. 1 University Rd., Tainan 701, Taiwan, ROC
  • Department of Life Sciences, National Cheng Kung University, No. 1 University Rd., Tainan 701, Taiwan, ROC
  • Department of Life Sciences, National Cheng Kung University, No. 1 University Rd., Tainan 701, Taiwan, ROC
  • Department of Biological Sciences, National Sun Yat-Sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan, ROC
  • Department of Life Sciences, National Cheng Kung University, No. 1 University Rd., Tainan 701, Taiwan, ROC
  • Institute of Tropical Plant Sciences, National Cheng Kung University, No. 1 University Rd., Tainan 701, Taiwan, ROC
  • Department of Life Sciences, National Cheng Kung University, No. 1 University Rd., Tainan 701, Taiwan, ROC
  • Department of Life Sciences, National Cheng Kung University, No. 1 University Rd., Tainan 701, Taiwan, ROC
  • Institute of Tropical Plant Sciences, National Cheng Kung University, No. 1 University Rd., Tainan 701, Taiwan, ROC
  • Ansari MKA, Ahmad A, Umar S, Iqbal M (2009) Mercury-induced changes in growth variables and antioxidative enzyme activities in Indian mustard. J Plant Int 4:131–136. doi:10.1080/17429140802716713
  • Asada K (1994) Production and action of active oxygen species in photosynthetic tissues. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defence systems in Plants. CRC Press, Boca Raton, FL, pp 77–104
  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez–Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415(6875):977–983. doi:10.1038/415977a
  • Beemster GT, Fiorani F, Inzé D (2003) Cell cycle: the key to plant growth control? Trends Plant Sci 8:154–158. doi:10.1016/S1360-1385(03)00046-3
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
  • Burssens S, Himanen K, van de Cotte B, Beeckman T, Van Montagu M, Inzé D, Verbruggen N (2000) Expression of cell cycle regulatory genes and morphological alterations in response to salt stress in Arabidopsis thaliana. Planta 211:632–640. doi: 10.1007/s004250000334
  • Chowhan N, Singh HP, Batish DR, Kohli RK (2011) Phytotoxic effects of b-pinene on early growth and associated biochemical changes in rice. Acta Physiol Plant 33:2369–2376. doi: 10.1007/s11738-011-0777-x
  • Del Razo LM, Quintanilla-Vega B, Brambila-Colombres E, Calderón-Aranda ES, Manno M, Albores A (2001) Stress proteins induced by arsenic. Toxicol Appl Pharmacol 177:132–148. doi: 10.1006/taap.2001.9291
  • Den Boer BG, Murray JA (2000) Control of plant growth and development through manipulation of cell-cycle genes. Curr Opin Biotechnol 11:138–145. doi:10.1016/S0958-1669(00)00072-0
  • Eckardt NA (2008) Oxylipin signaling in plant stress responses. Plant Cell 20:495–497. doi:10.1105/tpc.108.059485
  • Fischer NH (1986) The function of mono and sesquiterpenes as plant germination and growth regulators. In: Putnam AR, Tang CS (eds) The science of allelopathy. Wiley, New York, pp 203–218
  • Fu SF, Chow WC, Huang DD, Huang HJ (2002) Transcriptional regulation of a rice mitogen-activated protein kinase gene, OsMAPK4, in response to environmental stresses. Plant Cell Physiol 43:958–963. doi:10.1093/pcp/pcf111
  • Gao S, Yan R, Cao M, Yang W, Wang S, Chen F (2008) Effects of copper on growth, antioxidant enzymes and phenylalanine ammonialyase activities in Jatropha curcas L. seedling. Plant Soil Environ 54:117–122
  • Gao G, Zhang S, Wang C, Yang X, Wang Y, Su X, Du J, Yang C (2011) Arabidopsis CPR5 independently regulates seed germination and postgermination arrest of development through LOX pathway and ABA signaling. PLoS ONE 6(4):e19406. doi: 10.1371/journal.pone.0019406
  • Heyno E, Klose C, Krieger-Liszkay A (2008) Origin of cadmiuminduced reactive oxygen species production: mitochondrial electron transfer versus plasma membrane NADPH oxidase. New Phytol 179:687–699. doi:10.1111/j.1469-8137.2008.02512.x
  • Hwang EW, Kim KA, Park SC, Jeong MJ, Byun MO, Kwon HB (2005) Expression profiles of hot pepper (Capsicum annuum) genes under cold stress conditions. J Biosci 30:657–667. doi: 10.1007/BF02703566
  • Iba K (2002) Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu Rev Plant Biol 53:225–245. doi:10.1146/annurev.arplant.53.100201.160729
  • Ishihama N, Yamada R, Yoshioka M, Katou S, Yoshioka H (2011) Phosphorylation of the Nicotiana benthamiana WRKY8 transcription factor by MAPK functions in the defense response. Plant Cell 23:1153–1170. doi:10.1105/tpc.110.081794
  • Jin P, Wu X, Xu F, Wang X, Wang J, Zheng Y (2012) Enhancing antioxidant capacity and reducing decay of chinese bayberries by essential oils. J Agric Food Chem 60:3769–3775. doi:10.1021/jf300151n
  • Khan MH (2007) Induction of oxidative stress and antioxidant metabolism in Calamus Tenuis leaves under chromium and zinc toxicity. Indian J Plant Physiol 12:353–359
  • Kohler A, Schwindling S, Conrath U (2002) Benzothiadiazoleinduced priming for potentiated responses to pathogen infection, wounding, and infiltration of water into leaves requires the NPR1/NIM1 gene in Arabidopsis. Plant Physiol 128:1046–1056. doi:10.1104/pp.010744
  • Kolomiets MV, Chen H, Gladon RJ, Braun EJ, Hannapel DJ (2000) A leaf lipoxygenase of potato induced specifically by pathogen infection. Plant Physiol 124:1121–1130. doi:10.1104/pp.124.3.1121
  • Liu X, Bai X, Wang X, Chu C (2007) OsWRKY71, a rice transcription factor, is involved in rice defense response. J Plant Physiol 164:969–979. doi:10.1016/j.jplph.2006.07.006
  • Maksymiec W (2007) Signaling responses in plants to heavy metal stress. Acta Physiol Plant 29:177–187. doi:10.1007/s11738-007-0036-3
  • Maré C, Mazzucotelli E, Crosatti C, Francia E, Stanca AM, Cattivelli L (2004) Hv-WRKY38: a new transcription factor involved in cold- and drought-response in barley. Plant Mol Biol 55:399–416. doi:10.1007/s11103-004-0906-7
  • Melan MA, Dong X, Endara ME, Davis KR, Ausubel FM, Peterman TK (1993) An Arabidopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid, and methyl jasmonate. Plant Physiol 101:441–450. doi:10.1104/pp.101.2.441
  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. doi:10.1016/S1360-1385(02)02312-9
  • Mittler R, Zilinskas BA (1993) Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate-dependent reduction of nitroblue tetrazolium. Anal Biochem 212:540–546. doi:10.1006/abio.1993.1366
  • Müller CH (1970) Phytotoxins as plant habitat variables. Recent Adv Phytochem 3:106–121
  • Mutlu S, Atici Ö , Esim N, Mete E (2011) Essential oils of catmint (Nepeta meyeri Benth.) induce oxidative stress in early seedlings of various weed species. Acta Physiol Plant 33:943–951. doi: 10.1007/s11738-010-0626-3
  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53:1237–1247. doi:10.1093/jexbot/53.372.1237
  • Nishida N, Tamotsu S, Nagata N, Saito C, Sakai A (2005) Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. J Chem Ecol 31:1187–1203. doi:10.1007/s10886-005-4256-y
  • Peng X, Hu Y, Tang X, Zhou P, Deng X, Wang H, Guo Z (2012) Constitutive expression of rice WRKY30 gene increases the endogenous jasmonic acid accumulation, PR gene expression and resistance to fungal pathogens in rice. Planta 236:1485–1498. doi:10.1007/s00425-012-1698-7
  • Porta H, Rueda-Benıtez P, Campos F, Colmenero-Flores JM, Colorado JM, Carmona MJ, Covarrubias AA, Rocha-Sosa M (1999) Analysis of lipoxygenase mRNA accumulation in the common bean (Phaseolus vulgaris L.) during development and under stress conditions. Plant Cell Physiol 40:850–858
  • Rice EP (1984) Allelopathy, 2nd edn. Academic Press, London 308 pp
  • Riou-Khamlichi C, Huntley R, Jacqmard A, Murray JA (1999) Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science 283:1541–1544. doi:10.1126/science.283.5407.1541
  • Rizhsky L, Liang H, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130:1143–1151. doi:10.1104/pp.006858
  • Rodriguez MC, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol 61:621–649. doi:10.1146/annurev-arplant-042809-112252
  • Romagni JG, Allen SN, Dayan FE (2000) Allelopathic effects of volatile cineoles on two weedy plant species. J Chem Ecol 26:303–313. doi:10.1023/A:1005414216848
  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292. doi: 10.1046/j.1365-313X.2002.01359.x
  • Singh HP, Batish DR, Kaur S, Arora K, Kohli RK (2006) Alphapinene inhibits growth and induces oxidative stress in roots. Ann Bot 98:1261–1269. doi:10.1093/aob/mcl213
  • Singh HP, Kaur S, Mittal S, Batish DR, Kohli RK (2009) Essential oil of Artemisia scoparia inhibits plant growth by generating reactive oxygen species and causing oxidative damage. J Chem Ecol 35:154–162. doi:10.1007/s10886-009-9595-7
  • Smolander A, Ketola RA, Kotiaho T, Kanerva S, Suominen K, Kitunen V (2006) Volatile monoterpenes in soil atmosphere under birch and conifers: effects on soil N transformations. Soil Biol Biochem 38:3436–3442. doi:10.1016/j.soilbio.2006.05.019
  • Ulker B, Somssich IE (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7:491–498. doi:10.1016/j.pbi.2004.07.012
  • Wang YS, Yang ZM (2005) Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L. Plant Cell Physiol 46:1915–1923. doi:10.1093/pcp/pci202
  • Yeh CM, Chien PS, Huang HJ (2007) Distinct signalling pathways for induction of MAP kinase activities by cadmium and copper in rice roots. J Exp Bot 58:659–671. doi:10.1093/jxb/erl240
  • Yoshimura H, Sawai Y, Tamotsu S, Sakai A (2011) 1,8-cineole inhibits both proliferation and elongation of BY-2 cultured tobacco cells. J Chem Ecol 37:320–328. doi:10.1007/s10886-011-9919-2
  • Zhou ZS, Huang SQ, Guo K, Mehta SK, Zhang PC, Yang ZM (2007) Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. J Inorganic Biochem 101:1–9. doi: 10.1016/j.jinorgbio.2006.05.011
  • Zou X, Seemann JR, Neuman D, Shen QJ (2004) A WRKY gene from creosote bush encodes an activator of the abscisic acid signaling pathway. J Biol Chem 279:55770–55779. doi:10.1074/jbc.M408536200
rekord w opracowaniu
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.