PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 6 |

Tytuł artykułu

Cadmium effects on mineral accumulation and selected physiological and biochemical characters of Salix babylonica L.

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
To understand the phytoremediation capability of Cd by Salix babylonica L. we studied Cd accumulation and translocation, antioxidant enzyme activities, lipid peroxidation, and soluble protein contents in S. babylonica exposed to 10, 50, and 100 μM Cd for 7, 14, 21, and 28 d. The results indicated that seedling growth was accelerated by 10 μM Cd, and significantly inhibited by 50 and 100 μM Cd. The contents of Fe and Mn decreased significantly. The superoxide dismutase (SOD) activity in roots exposed to Cd was significantly higher than that in leaves. The level of peroxidase (POD) was significantly higher than that of control except for the roots treated with 10 and 50 μM Cd on day 28. POD activity in leaves was lower than that in roots. The level of catalase (CAT) was significantly lower than that of control. At 100 μM Cd, malondialdehyde (MDA) content increased significantly during the whole experiment. 50 μM Cd could induce high content of MDA in leaves. In general, the contents of hydrogen peroxide (H₂O₂), superoxide anion (O₂·-), and soluble protein showed an increasing trend. S. babylonica could be an efficient phytoextraction plant as it had considerable ability to accumulate Cd.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

6

Opis fizyczny

p.2667-2676,fig.,ref.

Twórcy

autor
  • Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
autor
  • Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
autor
  • Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
autor
  • Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China

Bibliografia

  • 1. PINTO A.P., MOTA A.M., DE VARENNES A., PINTO F.C. Influence of organic matter on the uptake of cadmium, zinc, copper and iron by Sorghum plants. Sci. Tot. Environ. 326, 239, 2004.
  • 2. DAUD M.K., HE Q.L., MEI L., ALI B., ZHU S.J. Ultrastructural, metabolic and proteomic changes in leaves of upland cotton in response to cadmium stress. Chemosphere 120, 309, 2015.
  • 3. CHOPPALA G., SAIFULLAH, BOLAN N., BIBI S., IQBAL M., RENGEL Z., KUNHIKRISHNAN A., ASHWATH N., OK Y.S. Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. Crit. Rev. Plant Sci. 33, 374, 2014.
  • 4. GE W., JIAO Y.Q., SUN B.L., QIN R., JIANG W.S., LIU D.H. Cadmium-mediated oxidative stress and ultrastructural changes in root cells of poplar cultivars. S. Afr. J. Bot. 83, 98, 2012.
  • 5. CHANEY R.L. Plant uptake of inorganic waste constituents. In: PARR J.F., KLA J.M. (Eds.), Land treatment of hazardous waste. Noyes Data Corp, Park Ridge, NJ, 50, 1983.
  • 6. WAN X.M., LEI M., YANG J.X. Two potential multi-metal hyperaccumulators found in four mining sites in Hunan Province, China. Catena 148, 67, 2017.
  • 7. BAKER A.J.M., BROOKS R.R. Terrestrial higher plants which hyperaccumulate metallic elements – A review of their distribution, ecology and phytochemistry. Biorecovery 1, 81, 1989.
  • 8. BAKER A.J.M., MCGRATH S.P., REEVES R.D., SMITH J.A.C. Metal hyperaccumulator plants: A review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: TERRY N., BAÑUELOS G.S. (Eds.). Phytoremediation of contaminated soil and water. CRC Press Inc., Boca Raton, FL, USA, 85, 2000.
  • 9. BAKER A.J.M., WHITING S.N. In search of the holy grail – A further step in understanding metal hyperaccumulation? New Phytol. 155, 1, 2002.
  • 10. JIAO Y.Q., GE W., QIN R., SUN B.L., JIANG W.S., LIU D.H. Influence of cadmium stress on growth, ultrastructure and antioxidative enzymes in Populus 2025. Fresen. Environ. Bull. 21, 1375, 2012.
  • 11. DICKINSON N.M. Strategies for sustainable woodland on contaminated soils. Chemosphere 41, 259, 2000.
  • 12. KACÁLKOVÁ L., TLUSTOŠ P., SZÁKOVÁ J. Phytoextraction of risk elements by willow and poplar trees. Int. J. Phytoremediat. 17, 414, 2015.
  • 13. YANG J.L., LI K., ZHENG W., ZHANG H.Z., CAO X.D., LAN Y.X., YANG C.P., LI C.H. Characterization of early transcriptional responses to cadmium in the root and leaf of Cd-resistant Salix matsudana Koidz. BMC Genomics 16, 1, 2015.
  • 14. ZOU J.H., WANG G., JI J., WANG J.Y., WU H.F., OU Y.J., LI B.B. Transcriptional, physiological and cytological analysis validated the roles of some key genes linked Cd stress in Salix matsudana Koidz. Environ. Experi. Bot. 134, 116, 2017.
  • 15. GUO B.H., DAI S.X., WANG R.G., GUO J.K., DING Y.Z., XU Y.M. Combined effects of elevated CO₂ and Cd-contaminated soil on the growth, gas exchange, antioxidant defense, and Cd accumulation of poplars and willows. Environ. Exp. Bot. 115, 1, 2015.
  • 16. DIMITRIOU I., ARONSSON P. Landfill leachate treatment with willows and poplars-efficiency and plant response. Waste Manag. 30, 2137, 2010.
  • 17. LI H., ZHANG G.C., XIE H.C., LI K., ZHANG S.Y. The effects of the phenol concentrations on photosynthetic parameters of Salix babylonica L. Photosynthetica 53, 1, 2015.
  • 18. YANG W.D., CHEN Y.T. Studies on cadmium uptake, accumulation and tolerance in Salix babylonica. J. Nanjing Forest. Univ. 33, 17, 2009.
  • 19. WANG W.W., WU Y.J., AKBAR S., JIA X.Q., HE Z.H., TIAN X.J. Effect of heavy metals combined stress on growth and metals accumulation of three Salix species with different cutting position. Int. J. Phytoremediat. 18, 761, 2016.
  • 20. SOLTI Á., SÁRVÁRI É., TÓTH B., MÉSZÁROS I., FODOR F., SZIGETI Z. Stress hardening under long-term cadmium treatment is correlated with the activation of antioxidative defence and iron acquisition of chloroplasts in Populus. Zeitschrift Für Naturforschung C 71, 323, 2016.
  • 21. SANDBICHLER A.M., HÖCKNER M. Cadmium protection strategies – a hidden trade-off? Int. J. Mol. Sci. 17, 139, 2016.
  • 22. YILDIZTUGAY E., OZFIDAN-KONAKCI C., KUCUKODUK M. Sphaerophysa kotschyana, an endemic species from central anatolia: antioxidant system responses under salt stress. J. Plant Res. 126, 729, 2013.
  • 23. BAXTER A., MITTLER R., SUZUKI N. ROS as key players in plant stress signaling. J. Exp. Bot. 65, 1229, 2014.
  • 24. BASHRI G., PRASAD S.M. Indole acetic acid modulates changes in growth, chlorophyll a fluorescence and antioxidant potential of trigonella foenum-graecum L. grown under cadmium stress. Acta. Physiol. Plant 37, 49, 2015.
  • 25. WU H.F., WANG J.Y., LI B.B., OU Y.J., JIANG W.S., LIU D.H., ZOU J.H. Characterisation of early responses to cadmium in roots of Salix matsudana Koidz. Toxico. Enviro. Chem. 2017. DOI: 10.1080/02772248.2017.1284850.
  • 26. BICZAK R., SNIOSZEK M., TELESINSKI A., PAWLOWSKA B. Growth inhibition and efficiency of the antioxidant system in spring barley and common radish grown on soil polluted ionic liquids with iodide anions. Ecotox. Environ. Safe. 139, 463, 2017.
  • 27. SIGAUD-KUTNER T.C.S., PINTO E., OKAMOTO O.K., LATORRE L.R., COLEPICOLO P. Changes in superoxide dismutase activity and photosynthetic pigment content during growth of marine phytoplankters in batch-cultures. Physiol. Plantarum 114, 566, 2002.
  • 28. ZHANG S.S., ZHANG H.M., QIN R., JIANG W.S., LIU D.H. Cadmium induction of lipid peroxidation and effects on root tip cells and antioxidant enzyme activities in Vicia faba L. Ecotoxicology 18, 814, 2009.
  • 29. ALAYAT A., SOUIKI L., GRARA N., DJEBAR M.R., BOUMEDRIS Z.E., BENOSMANE S., AMAMRA R., BERREBBAH H. Effects of cadmium on water content, soluble protein, proline changes and some antioxidant enzymes in wheat (Triticum durum desf.) leaves. Annu. Res. Rev. Biol. 4, 3835, 2014.
  • 30. FATEMEH B., REZA K.H. Effect of cadmium on photosynthetic pigments, proline, soluble proteins and some antioxidant enzymes in lentil (Lens culinaris medik.) seedlings. J. Anim. Plant Sci. 5, 117, 2016.
  • 31. ZHAO M.Z., LIU Z.L., CHEN W., CAI S.Y. Responses of Trifolium repens cv. rivendel seeds to cadmium stress in terms of electrolyte leakage and soluble protein content changes. Adv. Mater. Res. 955-959, 593, 2014.
  • 32. PIPER C.S. Soil and plant analysis. Monograph. Waite Agricultural Research Institute, The University of Adelaide, Australia. 56, 263, 1942.
  • 33. QIN R., JIAO Y.Q., ZHANG S.S., JIANG W.S., LIU D.H. Effects of aluminum on nucleoli in root tip cells and selected physiological and biochemical characters in Allium cepa var. agrogarum L. BMC Plant Biol. 10, 1, 2010.
  • 34. HU L.X., LI H.Y., PANG H.C., FU J.M. Responses of antioxidant gene, protein and enzymes to salinity stress in two genotypes of perennial ryegrass (Lolium perenne) differing in salt tolerance. J. Plant Physiol. 169, 146, 2012.
  • 35. ZHOU G., KONG Y., BI Y., LIANG H. Possible participation of active oxygen species in the induction of cyanide-resistant pathway at the initial senescence of tobacco callus. Russ. J. Plant Physl+ 48, 588, 2001.
  • 36. BRADFORD M.M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principe of protein-dye binding. Anal. Biochem. 72, 278, 1976.
  • 37. COURCHESNE F., TURMEL M., CLOUTIER-HURTEAU B., CONSTANTINEAU S., MUNRO L., LABRECQUE M. Phytoextraction of soil trace elements by willow during a phytoremediation trial in Southern Quebec, Canad. Int. J. Phytoremediat. 19, 545, 2017.
  • 38. KERSTEN G., MAJESTIC B., QUIGLEY M. Phytoremediation of cadmium and lead-polluted watersheds. Ecotox. Environ. Safe. 137, 225, 2017.
  • 39. LING T., JUN R., FANGKE Y. Effect of cadmium supply levels to cadmium accumulation by Salix. Int. J. Environ. Sci. Tech. 8, 493, 2011.
  • 40. WU H.F., WANG J.Y, LI B.B., OU Y.J., WANG J.R., SHI Q.Y., JIANG W.S., LIU D.H., ZOU J.H. Salix matsudana Koidz tolerance mechanisms to cadmium: Uptake and accumulation, subcellular distribution, and chemical forms. Pol. J. Environ. Stud. 25, 1739, 2016.
  • 41. DOS SANTOS UTMAZIAN M.N., WENZEL W.W. Cadmium and zinc accumulation in willow and poplar species grown on polluted soils. J. Plant Nutr. Soil Sci. 170, 265, 2007.
  • 42. VAN DER ENT A., BAKER A.J.M., REEVES R.D., POLLARD A.J., SCHAT H. Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362, 319, 2013.
  • 43. DOS SANTOS UTMAZIAN M.N., WIESHAMME G., VEGA R., WENZEL W.W. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Environ. Pollut. 148, 155, 2007.
  • 44. SAIFULLAH S.N., BIBI S., AHMAD M., OK Y.S. Effectiveness of zinc application to minimize cadmium toxicity and accumulation in wheat (Triticum aestivum L.). Environ. Earth Sci. 71, 1663, 2014.
  • 45. SHARMILA P., KUMARI P.K., SINGH K., PRASAD N.V.S.R.K., PARDHA-SARADHI P. Cadmium toxicity-induced proline accumulation is coupled to iron depletion. Protoplasma 254, 763, 2017.
  • 46. WANG L., HUANG X.C., MA F., SHIH-HSIN H., WU J.T., ZHU S.S. Environmental role of Rhizophagus irregularis in alleviating cadmium toxicity via improving the growth, micro- and macroelements uptake in Phragmites australis. Environ. Sci. Pollut. Res. Int. 24, 3593, 2017.
  • 47. RAHMAN A., NAHAR K., HASANUZZAMAN M., FUJITA M. Manganese-induced cadmium stress tolerance in rice seedlings: Coordinated action of antioxidant defense, glyoxalase system and nutrient homeostasis. CR. Biol. 339, 462, 2016.
  • 48. KOVÁCS K., KUZMANN E., VÉRTES A., Lévai L., CSEH E., FODOR F. Effect of cadmium on iron uptake in cucumber roots: A Mössbauer-spectroscopic Study. Plant Soil 327, 49, 2010.
  • 49. SUN S., LI M., ZOU J.H., JIANG W.S., LIU D.H. Cadmium effects on mineral accumulation, antioxidant defence system and gas exchange in cucumber. Zemdirbyste-Agriculture 102, 193, 2015.
  • 50. SIDHU G.P.S., SINGH H.P., BATISH D.R., KOHLI, R. Tolerance and hyperaccumulation of cadmium by a wild, unpalatable herb Coronopus didymus (L.) Sm. (Brassicaceae). Ecotox. Environ. Safe. 135, 209, 2017.
  • 51. ZOU J.H., YUE J.Y., ZHANG Z.G., JIANG W.S., LIU D.H. Effects of cadmium stress on root tip cells and some physiological indexes in Allium cepa var. agrogarum L. Acta Biol. Cracov. Bot. 54, 129, 2012.
  • 52. LUSHCHAK V.I. Environmentally induced oxidative stress in aquatic animals. Aquat. Toxicol. 101, 13, 2011.
  • 53. LI Y., ZHANG S.S., JIANG W.S., LIU D.H. Cadmium accumulation, activities of antioxidant enzymes, and malondialdehyde (MDA) content in Pistia stratiotes L. Environ. Sci. Pollut. Res. 20, 1117, 2013.
  • 54. QURESHI M.I., D’AMICI G.M., FAGIONI M., RINALDUCCI S., ZOLLA L. Iron stabilizes thylakoid protein–pigment complexes in indian mustard during Cd-phytoremediation as revealed by BN-SDS-PAGE and ESI-MS/MS. J. Plant Physiol. 167, 761, 2010.
  • 55. LUO C.S., LIANG J.R., LIN Q., LI C.X., BOWLER C., ANDERSON D.M., WANG P., WANG X.W., GAO Y.H. Cellular responses associated with ROS production and cell fate decision in early stress response to iron limitation in the diatom Thalassiosira Pseudonana. J. Proteome Res. 13, 5510, 2014.
  • 56. SOUGUIR D., EL FERJANI E., LEDOIGT G., GOUPIL P. Transcript accumulation of stress-related genes in Vicia Faba roots under a short exposure to cadmium. Plant Biosyst. 149, 280, 2015.
  • 57. XU Q.J., JIN X.C., WANG X.M., HU X.W., CHEN X.Q., YAN C.Z. Effects of different concentration Ammonium-n on Hydrilla verticillata antioxidant enzymes under Cd stress. Chin. J. Appl. Ecol. 18, 420, 2007.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-35dd8a0a-4acc-4346-9009-4346c362f160
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.