PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 28 | 2 |
Tytuł artykułu

Prediction of CEC using fractal parameters by artificial neural networks

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The prediction of cation exchange capacity from readily available soil properties remains a challenge. In this study, firstly, we extended the entire particle size distribution curve from limited soil texture data and, at the second step, calculated the fractal parameters from the particle size distribution curve. Three pedotransfer functions were developed based on soil properties, parameters of particle size distribution curve model and fractal parameters of particle size distribution curve fractal model using the artificial neural networks technique. 1 662 soil samples were collected and separated into eight groups. Particle size distribution curve model parameters were estimated from limited soil texture data by the Skaggs method and fractal parameters were calculated by Bird model. Using particle size distribution curve model parameters and fractal parameters in the pedotransfer functions resulted in improvements of cation exchange capacity predictions. The pedotransfer functions that used fractal parameters as predictors performed better than the those which used particle size distribution curve model parameters. This can be related to the non-linear relationship between cation exchange capacity and fractal parameters. Partitioning the soil samples significantly increased the accuracy and reliability of the pedotransfer functions. Substantial improvement was achieved by utilising fractal parameters in the clusters.
Wydawca
-
Rocznik
Tom
28
Numer
2
Opis fizyczny
p.143-152,fig.,ref.
Twórcy
autor
  • Department of Soil Science, Bu Ali Sina University, Hamadan, Iran
autor
  • Department of Soil Science, Rice Research Institute of Iran, Rasht, Iran
autor
  • Department of Soil Science, Bu Ali Sina University, Hamadan, Iran
Bibliografia
  • Ahmad N., 1983. Vertisols. In: Pedogenesis and Soil Taxonomy.The Soil Orders (Eds L.P. Wilding, N.E. Smeck, G.F. Hall), Elsevier, New York, USA.
  • Amini M., Abbaspour K.C., Khademi H., Fathianpour N., Afyuni M., and Schulin R., 2005. Neural network models to predict cation exchange capacity in arid regions of Iran. European J. Soil Sci., 56(4), 551-559.
  • Bayat H., Neyshabouri M.R., Mohammadi K., and Nariman- Zadeh N., 2011. Estimating water retention with pedotransfer functions using multi-objective group method of data handling and ANNs. Pedosphere, 21(1), 107-114.
  • Bird N.R.A., Perrier E., and Rieu M., 2000. The water retention function for a model of soil structure with pore and solid fractal distributions. European J. Soil Sci., 51(1), 55-63.
  • Bishop T.F.A. and McBratney A.B., 2001. A comparison of prediction methods for the creation of field-extent soil property maps. Geoderma, 103(1-2), 149-160.
  • Davatgar N.,Kavoosi M., Alinia M.H., andPaykan M., 2006. Study of potassiun status and effect of physical and chemical properties of soil on it in paddy soils of guilan province. JWSS – Isfahan Univ. Technol., 9(4), 71-89.
  • Diebold F.X. and Mariano R.S., 2002. Comparing predictive accuracy. J. Business Economic Statistics, 20(1), 134-144.
  • Efron B. and Tibshirani R.J., 1993. An introduction to the bootstrap. Monographs on Statistics and Applied Probability, Chapman and Hall Press, London, UK.
  • Ersahin S., Gunal H., Kutlu T., Yetgin B., and Coban S., 2006. Estimating specific surface area and cation exchange capacity in soils using fractal dimension of particle-size distribution. Geoderma, 136(3-4), 588-597.
  • Gee G.W. and Or D., 2002. Particle-size analysis. In: Methods of Soil Analysis. Physical methods (Ed. A.D. Warren). SSSA, Madison, WI, USA.
  • Giménez D., Perfect E., Rawls W.J., and Pachepsky Y., 1997. Fractal models for predicting soil hydraulic properties: A review. Eng. Geology, 48(3-4), 161-183.
  • Hwanga Ii S., Leeb K.P., Leeb D.S., and Powers S.E., 2002. Models for estimating soil particle-size distributions. Soil Sci. Soc. America J., 66(4), 1143-1150.
  • Krogh L., Breuning-Madsen H., and Greve M.H., 2000. Cationexchange capacity pedotransfer functions for Danish soils. Acta Agriculturae Scandinavica, Soil Plant Sci., 50(1), 1-12.
  • Laird D.A., Barriuso E.,Dowdy R.H., and KoskinenW.C., 1992. Adsorption of atrazine on smectites. Soil Sci. Soc. America J., 56(1), 62-67.
  • MacDonald K., 1998. Development of pedotransfer functions of southern Ontario soils (Eds Y. Pachepsky, W.J. Rawls). Harrow, Ontario, Canada.
  • Manrique L.A., Jones C.A., and Dyke P.T., 1991. Predicting cation-exchange capacity from soil physical and chemical properties. Soil Sci. Soc. America J., 55(3), 787-794.
  • Millan H., González-Posada M., and Benito R.M., 2002. Fragmentation fractal dimensions of Vertisol samples: Influence of sieving time and soil pretreatment. Geoderma, 109(1-2), 75-83.
  • Millán H. and Orellana R., 2001. Mass fractal dimensions of soil aggregates from different depths of a compacted Vertisol. Geoderma, 101(3-4), 65-76.
  • Nelson D.W. and Sommers L.P., 1986. Total carbon, organic carbon and organic matter. In: Methods of Soil Analysis. Agronomy Handbook American Society of Agronomy and Soil Science Society of America (Ed. A.L. Page). Madison, WI, USA.
  • Nemes A., Schaap M.G., and Wösten J.H.M., 2003. Functional evaluation of pedotransfer functions derived from different scales of data collection. Soil Sci. Soc. America J., 67(4), 1093-1102.
  • NeuroSolutions, 2005. Getting Started Manual (www.nd.com). NeuroDimension Press, Gainesville, FL, USA.
  • Pachepsky Y.A. and Rawls W.J., 1999. Accuracy and reliability of pedotransfer functions as affected by grouping soils. Soil Sci. Soc. America J., 63(6), 1748-1757.
  • Peinemann N., Amiotti N.M., Zalba P., and Villamil M.B., 2000. Effect of clay minerals and organic matter on the cation exchange capacity of silt fractions. J. Plant Nutrition Soil Sci., 163(1), 47-52.
  • Salehi M.H., Mohajer R., and Beigie H., 2008. Developing soil cation exchange capacity pedotransfer functions using regression and neural networks and the effect of soil partitioning on the accuracy and precision of estimation. Int. Meeting Soil Fertility Land Management and Agroclimatology, October 29 – November 1, Kuºadasi, Turkey.
  • Seilsepour M. and Rashidi M., 2008. Modeling of soil cation exchange capacity based on soil colloidal matrix. American-Eurasian J. Agric. Environ. Sci., 3(3), 365-369.
  • Seybold C.A., Grossman R.B., and Reinsch T.G., 2005. Predicting cation exchange capacity for soil survey using linear models. Soil Sci. Soc. America J., 69(3), 856-863.
  • Skaggs T.H., Arya L.M., Shouse P.J., and Mohanty B.P., 2001. Estimating particle-size distribution from limited soil texture data. Soil Sci. Soc. America J., 65(4), 1038-1044.
  • Soil Survey Division Staff, 1993. Soil survey manual. Soil Conservation Service, Washington, DC, USA.
  • Sokołowska Z., Hajnos M., Hoffmann C., Renger M., and Sokołowski S., 2001. Comparison of fractal dimensions of soils estimated from adsorption isotherms, mercury intrusion, and particle size distribution. J. Plant Nutrition Soil Sci., 164(5), 591-599.
  • SPSS Inc, 1994. SPSS Professional Statistics. SPSS Press, Chicago, USA.
  • Staff S.S., 1975. Soil taxonomy. A basic system of soil classification for making and interpreting soil surveys. U.S. Department of Agriculture handbook, Government Printing Office, Washington, DC, USA.
  • Stewart W.M. and Hossner L.R., 2001. Factors affecting the ratio of cation exchange capacity to clay content in lignite overburden. J. Environ. Quality, 30(4), 1143-1149.
  • Wösten J.H.M., Pachepsky Y.A., and Rawls W.J., 2001. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. J. Hydrol., 251, 123-150.
  • Wu J., Norvell W.A., Hopkins D.G., Smith D.B., Ulmer M.G., and Welch R.M., 2003. Improved prediction and mapping of soil copper by kriging with auxiliary data for cationexchange capacity. Soil Sci. Soc. America J., 67(3), 919-927.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-35c845f8-ad64-4961-a32a-a0f1742fb209
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.