Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 59 | 3 |
Tytuł artykułu

Vasostatin increases oxygenation of B16-F10 melanoma tumors and raises therapeutic efficacy of cyclophosphamide

Treść / Zawartość
Warianty tytułu
Języki publikacji
One of the preconditions of effective anticancer therapy is efficient transfer of the therapeutic agent (chemotherapeutic) to tumor cells. Fundamental barriers making drug delivery and action difficult include underoxygenation, elevated interstitial pressure, poor and abnormal tumor blood vascular network and acidic tumor milieu. In this study we aimed at developing an optimized scheme of administering a combination of an angiogenesis-inhibiting drug (vasostatin) and a chemotherapeutic (cyclophosphamide) in the therapeutic treatment of mice bearing experimental B16-F10 melanoma tumors. We report that the strongest tumor growth inhibition was observed in mice that received two, three or four vasostatin doses in combination with one injection of cyclophosphamide (i.e., V2 + CTX, V3 + CTX or V4 + CTX schemes). Double administration of vasostatin increases oxygenation of B16-F10 tumors. On the other hand, its five-fold administration lowers tumor oxygenation, breaks down tumor vascular network (increasing hypoxia) and leads in consequence to death of cancer cells and appearance of necrotic areas in the tumor. A decreased cyclophosphamide dose in combination with two doses of vasostatin (V2 + CTX scheme) inhibits tumor growth similarly to a larger dose of cyclophosphamide alone.
Opis fizyczny
  • Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
  • Browder T, Butterfield C, Kräling B, Shi B, Marshall B, O'Reilly M, Folkman J (2000) Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 60: 1878-1886. 
  • Cai KX, Tse LY, Leung C, Tam PK, Xu R, Sham MH (2008) Suppression of lung tumor growth and metastasis in mice by adeno-associated virus-mediated expression of vasostatin. Clin Cancer Res 14: 939-949. 
  • Cairns R, Papandreou I, Denko N (2006) Overcoming physiologic barriers to cancer treatment by molecularly targeting the tumor microenvironment. Mol Cancer Res 4: 61-70. 
  • Carmeliet P, Jain RK (2011) Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 10: 417-427. 
  • Chabot S, Jabrane-Ferrat N, Bigot K, Tabiasco J, Provost A, Golzio M, Noman MZ, Giustiniani J, Bellard E, Brayer S, Aguerre-Girr M, Meggetto F, Giuriato S, Malecaze F, Galiacy S, Jaïs JP, Chose O, Kadouche J, Chouaib S, Teissié J, Abitbol M, Bensussan A, Le Bouteiller P (2011) A novel antiangiogenic and vascular normalization therapy targeted against human CD160 receptor. J Exp Med 208: 973-986. 
  • Fukumura D, Jain RK (2007) Tumor microvasculature and microenvironment: Targets for anti-angiogenesis and normalization. Microvasc Res 74: 72-84. 
  • Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, Jain RK (2011) Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91: 1071-1121. 
  • Goel S, Wong AH, Jain RK (2012) Vascular normalization as a therapeutic strategy for malignant and nonmalignant disease. Cold Spring Harb Perspect Med 2: a006486. 
  • Jain RK (2003) Molecular regulation of vessel maturation. Nature Med 9: 685-693. 
  • Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307: 58-63. 
  • Jain RK, Duda D, Clark J, Loeffler J (2006) Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nature Clinical Practice 3: 24-39. 
  • Jazowiecka-Rakus J, Jarosz M, Kozłowska D, Sochanik A, Szala S (2007) Combination of vasostatin and cyclophosphamide in the therapy of murine melanoma tumors. Acta Biochim Pol 54: 125-133. 
  • Kozin S, Boucher Y, Hicklin D, Bohlen P, Jain R, Suit H (2001) Vascular endothelial growth factor receptor-2-blocking antibody potentiates radiation-induced long-term control of human tumor xenografts. Cancer Res 61: 39-44. 
  • Liu J, Liao S, Huang Y, Samuel R, Shi T, Naxerova K, Huang P, Kamoun W, Jain RK, Fukumura D, Xu L (2011) PDGF-D Improves drug delivery and efficacy via vascular normalization, but promotes lymphatic metastasis by activating CXCR4 in breast cancer. Clin Cancer Res 17: 3638-3648. 
  • Martinez-Lacaci I, Garcia Morales P, Soto JL, Saceda M (2007) Tumour cells resistance in cancer therapy. Clin Transl Oncol 9: 13-20. 
  • Matsumoto S, Batra S, Saito K, Yasui H, Choudhuri R, Gadisetti C, Subramanian S, Devasahayam N, Munasinghe JP, Mitchell JB, Krishna MC (2011) Antiangiogenic agent sunitinib transiently increases tumor oxygenation and suppresses cycling hypoxia. Cancer Res 71: 6350-6359. 
  • Minchinton AI, Tannock IF (2006) Drug penetration in solid tumours. Nat Rev Cancer 6: 583-592. 
  • Ribatti D (2011) Vascular normalization: a real benefit? Cancer Chemother Pharmacol 68: 275-278. 
  • Segers J, Di Fazio V, Ansiaux R, Martinive P, Feron O, Wallemacq P, Gallez B (2006) Potentiation of cyclophosphamide chemotherapy using the anti-angiogenic drug thalidomide: Importance of optimal scheduling to exploit the 'normalization' window of the tumor vasculature. Cancer Lett 244: 129-135. 
  • Smolarczyk R, Cichoń T, Kamysz W, Głowala-Kosińska M, Szydło A, Szultka L, Sieroń AL, Szala S (2010) Anticancer effects of CAMEL peptide. Lab Invest 90: 940-952. 
  • Sun Q, Xu Q, Dong X, Cao L, Huang X, Hu Q, Hua ZC (2008) A hybrid protein comprising ATF domain of pro-UK and VAS, an angiogenesis inhibitor, is a potent candidate for targeted cancer therapy. Int J Cancer 123: 942-950. 
  • Tong R, Boucher Y, Kozin S, Winkler F, Hicklin D, Jain RK (2004) Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumor. Cancer Res 64: 3731-3736. 
  • Vaupel P (2006) Abnormal microvasculature and defective microcirculatory function of solid tumors. In Vascular-targeted Therapies in Oncology. Siemann DW, eds, pp 9-29. John Wiley & Sons Ltd, Chichester, United Kingdom.
  • von Baumgarten L, Brucker D, Tirniceru A, Kienast Y, Grau S, Burgold S, Herms J, Winkler F (2011) Bevacizumab has differential and dose-dependent effects on glioma blood vessels and tumor cells. Clin Cancer Res 17: 6192-6205. 
  • Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF, Garkavtsev I, Xu L, Hicklin DJ, Fukumura D, di Tomaso E, Munn LL, Jain RK (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: Role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6: 553-563. 
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.