PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2012 | 19 | 2 |
Tytuł artykułu

The change of root morphology of Plantago lanceolata under hypoxia conditions

Treść / Zawartość
Warianty tytułu
PL
Zmienność morfologii korzeni Plantago lanceolata w warunkach hypoksji
Języki publikacji
EN
Abstrakty
EN
Many plant species can adapt to flooding and hypoxia by forming a root system with an altered architecture: thicker, shorter and shallower adventitious roots, than under aerated conditions. The internal gas transport is often improved by increased root porosity and aerenchyma, which is tissue with large intercellular spaces. The raised root aeration allows better supply of oxygen to plant tissues and diffusion of oxygen into the rhizosphere (Radial Oxygen Loss, ROL). This phenomenon creates narrow, but well aerated zones in the hypoxic soil, where phytotoxins are oxidised and methanotrophic as well as nitrifying bacteria can live. The aim of the study was to determine the change of root archi-tecture, porosity and ROL from roots of Plantago lanceolata plants originating from The Middle Vistula River Gorge. Selected plant species were subjected to transient flooding during 7 days of culti-vation on aerated and stagnant oxygen-deficient hydroponic medium. We observed the formation of shorter hypoxic, adventitious roots (56-69 mm) than control roots (112-196 mm) with high porosity (stagnant 15-21 %, control 8.5-9.4%), and the diameter of aerated zone (halo) increased from control values of 0-1.5 mm to 2-2.5 mm under hypoxic conditions.
PL
Wiele gatunków roślin adoptuje się do powodzi i hipoksji. Mogą formować system korzeniowy o zmienionej architekturze: grubsze, krótsze i płytsze korzenie przybyszowe niż w natlenionych warunkach. Wewnętrzny transport gazów jest często poprawiany przez zwiększoną porowatość korzeni i aerenchymę, tkankę z dużymi przestworami międzykomórkowymi. Zwiększone natlenianie korzeni pozwala na lepszy transport tlenu do tkanek roślin i dyfuzję tlenu do ryzosfery (radialna utrata tlenu, ROL). Ten fenomen stwarza wąską lecz dobrze natlenioną, hipoksyczną strefę w glebie, gdzie fitotoksyny są utleniane a bakterie metanotroficzne i nitryfikacyjne mogą żyć. Celem badań było określenie zmiany architektury korzeni, porowatości i ROL z korzeni Plantago lanceolata zamieszkujących Małopolski Przełom Wisły. Wybrane gatunki roślin były poddane przejściowemu zalaniu przez 7 dni hodowli na natlenionym i hipoksycznym podłożu. Zaobserwowaliśmy formowanie krótszych korzeni przybyszowych (56-69 mm) niż u roślin kontrolnych (112-196 mm) o dużej porowatości (podłoże niedotlenione 15-21%, kontrolne 8,5-9,4%) a średnica strefy natlenionej (halo) zwiększyła się z wartości kontrolnej na poziomie 0-1,5 mm do 2-2,5 mm w warunkach hipoksycznych.
Słowa kluczowe
Wydawca
-
Czasopismo
Rocznik
Tom
19
Numer
2
Opis fizyczny
p.253-263,fig.,fot.,ref.
Twórcy
autor
  • Department of Biochemistry and Environmental Chemistry, The John Paul II Catholic University of Lublin, Al.Krasnicka 102, 20-718 Lublin, Poland
autor
Bibliografia
  • Armstrong J., Armstrong W., 2005. Rice: sulfideinduced barriers to root radial oxygen loss, Fe2+ and water uptake, lateral root emergence. Annals of Botany, 96, 625-638.
  • Armstrong W., 1967. The use of polarography in the assay of oxygen diffusing from roots in an-aerobic media. Physiologia Plantarum, 20, 540-553.
  • Armstrong W., 1970. Rhizosphere oxidation in rice and other species; a mathematical model based on the oxygen flux component. Physiologia Plantarum, 23, 623-630.
  • Armstrong W., 1972. A Reexamination of the Functional Significance of Aerenchyma. Physiologia Plantarum, 27 (2), 173-177.
  • Armstrong W., 1979. Aeration in higher plants. Advances in Botanical Research, 7, 225-332.
  • Banach K., Banach A.M., Lamers L.P.M. De Kroon H., Bennicelli R.P., Smiths A.J.M., Visser E.J.W., 2009. Differences in flooding tolerance between species from two wetland habitats with contrasting hydrology: implications for vegetation development in future floodwater retention areas. Annals of Botany, 103, 341-351.
  • Blom C.W.P.M., Bögemann G.M., Laan P., Van der Sman A.J.M., Van de Steeg H.M., Voesenek L.A.C.J., 1990. Adaptations to flooding in plants from river areas. Aquatic Botany, 38, 29-47.
  • Blom C.W.P.M., Voesenek L.A.C.J., Banga M., Engelaar W.M. H.G., Rijnders J.H.G.M., Van de Steeg H.M., Visser E.J.W. 1994. Physiological ecology of riverside species: adaptive responses of plants to submergence. Annals of Botany, 74, 253-263.
  • Blom C.W.P.M., Voesenek L.A.C.J., 1996. Flooding: the survival strategies of plants. Trends in Ecology and Evolution, 11, 290-295.
  • Brailsford R.W., Voesenek L.A C.J., Blom C.W.P.M., Smith A.R., Hall M.A., Jackson M. B., 1993. Enhanced ethylene production by primary root of Zea mays L. in response to sub-ambient partial pressures of oxygen. Plant Cell & Environment, 16, 1071-1080.
  • Braun-Blanquet J., 1928. Pflanzensoziologie. Springer Verlag, Wien.
  • Brune A., Frenzel P., Cypionka H., 2000. Life at the oxicanoxic interface: microbial activities and adaptations. FEMS Microbiology Reviews, 24, 691-710.
  • Colmer T.D., 2003. Long distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant, Cell and Environment, 26, 17-36.
  • Colmer T.D., Gibbert M.R., Wiegweera a., Tinh T.K., 1998, The barrier to radial oxygen loss from roots of rice (Oryza sativa L.) is induced by growth in stagnant solution. Journal of Experimental Botany, 49(325), 1431-1436.
  • Dat J.F., Capelli N., Folzer H., Bourgeade P., Badot P-M., 2004. Sensing and signalling during plant flooding. Plant Physiology and Biochemistry 42, 273-282.
  • Drew M. C., He C.-J., Morgan P. W., 2000. Programmed cell death and aerenchyma formation in roots. Trends in Plant Science Revews, 5(3), 123-127.
  • Engelaar W.M.H.G., Symens J.C., Laanbroek H.J., Blom C.W.P.M., 1995. Preservation of nitrifying capacity and nitrate availability in waterlogged soils by radial oxygen loss from roots of wet-land plants. Biology and Fertility Soils, 20, 243–248.
  • Grimoldi A.A., Insausti P., Vasellati V., Striker G.G., 2005. Constitutive and plastic root traits and their role in differential tolerance to soil flooding among coexisting species of a lowland grassland. International Journal of Plant Science, 166 (5), 805-813.
  • Janecki J., 1999. Polish vegetation physiognomy (in Polish). Editors of publications KUL, Lublin.
  • Jespersen D.N., Sorrel B.K., Brix H., 1998. Growth and root oxygen release by Typha latifolia and its effects on sediment methanogenesis. Aquatic Botany, 61, 165-180.
  • Končalova H., 1990. Anatomical adaptations to waterlogging in roots of wetland graminoids: limitations and drawbacks. Aquatic Botany, 38(1), 127-134.
  • Kucharczyk M., 2001. Distribution atlas of vascular plants in the Middle Vistula River Valley. UMCS Press, Lublin.
  • Laskov C., Horn O., Hupfer M., 2006. Environmental factors regulating the radial oxygen loss from roots of Myriophyllum spicatum and Potamogeton crispus. Aquatic Botany, 84, 333-340.
  • Mainiero R., Kazada M., 2004. Effects of Carex rostrata on soil oxygen in relation to soil moisture. Plant and Soil, 270, 311-320.
  • Matuszkiewicz W., 2008. The guide to the determination of Polish plant communities. (in Polish). Scientific Publishing PWN, Warszawa.
  • Nabben R.H.M., Blom C.W.P.M., Voesenek L.A.C.J., 1999. Resistance to complete submergence in Rumex species with different life histories: the influence of plant size and light. New Phytologist, 144, 313–321.
  • Polakowski B. (red.) 1995. Botany (in Polish). Scientific Publishing PWN, Warszawa 1995.
  • Ram P.C., Singh B.B., Singh A. K., Ram P., Singh P.N., Singh H.P., Boamfa I., Harren F., Santosa E., Jack-son M.B., Setter T.L., Reuss J., Wade L.J., Singh V.P., Singh R.K., 2002. Submergence tolerance in rainfed lowland rice: physiological basis and prospects for cultivar improvement through marker-aided breeding. Field Crops Research, 76, 131-152.
  • Roelofs J.G.M., 1991. Inlet of alkaline river water into peaty lowlands: effects on water quality and Stratiotes aloides L. Stands, Aquatic Botany, 39, 267-293.
  • Rutkowski L, 2004. The guide to the determination of vascular plants from Polish lowland (in Polish). Scientific Publishing Naukowe PWN, Warszawa.
  • Sasikala S., Tanaka N., Wah Wah H.S.Y., Jinadasa K.B.S.N., 2009. Effects of water level fluctuation on radial oxygen loss, root porosity, and nitrogen removal in subsurface vertical flow wetland mesocosms. Ecological Engineering, 35(3), 410-417.
  • Smirnoff N., Crawford R.M.M., 1983. Variation in the structure and response to flooding of root aerenchyma in some wetland plants. Annals of Botany, 51, 237-249.
  • Sorrell B.K., 1999. Effect of external oxygen demand on radial oxygen loss by Juncus roots in titanium citrate solutions. Plant, Cell & Environment, 22(12), 1587-1593.
  • Striker G.G., Insausti P., Grimoldi A.A., Vega A.S., 2007. Trade-off between root porosity and mechanical strength in species with different types of aerenchyma. Plant, Cell and Environment, 30, 580-589.
  • Thomas K., Benstead J., Davies K.L. Lloyd D., 1995. Role of wetland plants in the diurnal control of CH4 and CO2 fluxes in peat. Soil Biology & Biochemistry, 28 (1), 17-23.
  • Van Eck W.H.J.M., Van de Steeg H.M., Blom C.W.P.M., De Kroon H., 2004. Is tolerance to summer flood-ing correlated with distribution patterns in river floodplains? A comparative study of 20 terrestrial grassland species, Oikos, 107, 393-405.
  • Vartepetian B. B., Snkhchian H.H., Generozova I.P., 1987. Mitochondrial fine structure in imbibing seeds and seedlings of Zea mays L. under anoxia. In Plant Life in Aquatic and Amphibious Habitats, R.M.M. Crawford. Oxford: Blackwell Scientific Publications, 205-223.
  • Visser E.J.W., Blom C.W.P.M., Voesenek L.A.C.J., 1996. Flooding-induced adventitious rooting in Rumex: morphology and development in an ecological perspective. Acta Botanica Neerlandica, 45, 17-28.
  • Visser E.J.W., Bögemann G.M., 2003. Measurement of porosity in very small samples of plant tissue. Plant and Soil, 253, 81-90.
  • Visser E.J.W., Nabben R.H.M., Blom C.W.P.M., Voesenek L.A.C.J., 1997. Growth of primary lateral roots and adventitious roots during conditions of hypoxia and high ethylene concentrations. Plant, Cell and Environment, 20, 647-653
  • Visser E.J.W., Voesenek L.A.C.J., 2004. Acclimation to soil flooding - sensing and signal-transduction. Plant and Soil, 254, 197-214.
  • Voesenek L.A.C.J, Blom C.W.P.M., Barendse G.W.M., 1988. The role of ethylene in the "supergrowth" response of submerged Rumex species. In: Proceedings of the 13th International Conference on Plant Growth Substances, Calgary, Canada.
  • Voesenek L.A.C.J., Colmer T.D., Pierik R., Millenaar F.F., Peeters A.J.M., 2006. How plants cope with complete submergence. New Phytologist, 170(2), 213–226.
  • Wiengweera A., Greenway H., Thomson C.J. 1997. The use of agar nutrient solution to simulate lack of convection in waterlogged soils. Annals of Botany, 80, 115-123.
Uwagi
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-359a4947-f866-4f6b-b470-d99d1c3789a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.