PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2013 | 69 |
Tytuł artykułu

Growth regulators and guaiacol peroxidase activity during the induction phase of somatic embryogenesis in Picea species

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Biochemical studies during the induction phase of somatic embryogenesis in Picea abies [L.] Karst. and P. omorika [Pančić] Purk. can supplement our basic knowledge of the developmental processes accompanying the formation of embryogenic tissues from explants. Such studies may also contribute to finding the markers specific to the early stages of somatic embryogenesis of spruce species and, consequently, to the optimization of the process of initiation of embryogenic tissues from different types of plant explants treated with various growth regulator combinations. In this paper the effect of certain growth regulator systems on enzymatic activity was studied. The analysis of guaiacol peroxidase activity (EC 1.11.1.7), based on the spectrophotometric method, showed that this activity was the lowest in mature zygotic embryos (explants) and significantly higher in 8-week-old embryogenic and non-embryogenic calluses treated with various combinations of growth regulators. In the newly initiated embryogenic tissue, the activity of this enzyme decreased and remained at a lower level during proliferation, irrespective of the applied growth regulator combination. The type and concentration of growth regulators used for the initiation and proliferation of embryogenic tissues had no statistically significant effect on peroxidase activity, although during the initiation often its increased level was observed in calluses treated with 2.4-D. Detection of guaiacol peroxidase activity in the induction phase of somatic embryogenesis proves its participation in this process. The subsequent change in its activity indicates that this peroxidase can be a biochemical marker of somatic embryogenesis of the tested spruce species.
Słowa kluczowe
Wydawca
-
Czasopismo
Rocznik
Tom
69
Opis fizyczny
p.77-86,fig.,ref.
Twórcy
  • Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kornik, Poland
autor
autor
Bibliografia
  • Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254.
  • Brownleader M.D., Hopkins J., Mobasheri A., Dey P.M., Jackson P., Trevan M. 2000. Role of extension peroxidase in tomato (Lycopersicon esculentum Mill.) seedling growth. Planta 210: 668–676.
  • Carpin S., Crevecoeur M., Greppin H., Penel C. 1999. Molecular cloning and tissue-specific expression of an anionic peroxidase in zucchini. Plant Physiology 120: 799–810.
  • Chance B., Maehly A.C. 1955. Assay of catalases and peroxidases. In: Collowick S.P., Kapplan N.O., (eds). Methods in enzymology. Academic Press, New York, (2) pp. 764–775.
  • Cordewener J., Booij H., Der Zanęt H., Van Engelen F., Van Kammen A., De Fries S. 1991. Tunicamycin- inhibited carrot somatic embryogenesis can be stored by secreted cationic peroxidase isoenzymes. Planta 184: 478–486
  • Feher A., Pasternak T.P., Dudits D. 2003. Transition of somatic plant cells to an embryogenic state. Plant Cell, Tissue and Organ Culture 74: 201–228.
  • Filonova L.H., Bozhkov P.V., von Arnold S. 2000. Developmental pathway of somatic embryogenesis in Picea abies as revealed by time-lapse tracking. Journal of Experimental Botany 51: 249–264.
  • Gaj M. 2004. Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regulation 43: 27–47.
  • Hazubska-Przybył T., Bojarczuk K. 2008. Somatic embryogenesis of selected spruce species (Picea abies, P. omorika, P. pungens ‘Glauca’ and P. breweriana). Acta Societatis Botanicorum Poloniae 77: 189–199.
  • H ib J., Vooková B., Kormuták A. 1997. Biochemical differences between normal callus and embryogenic suspensor mass of silver fir. Biologia Plantarum 39: 507–513.
  • Jimenez V.M. 2001. Regulation of in vitro somatic embryogenesis with emphasis on the role of endogenous hormone. Revista Brasileira de Fisiologia Vegetal 13: 196–223.
  • de Klerk G.J., Arnholdt-Schmitt B., Lieberei R., Neumann K.-H. 1997. Regeneration of roots, shoots and embryos: physiological, biochemical and molecular aspects. Biologia Plantarum 39: 53–66.
  • Krsnik-Rasol M. 1991. Peroxidase as a developmental marker in plant tissue culture. International Journal of Developmental Biology 35: 259–263.
  • Kormuták A., Salaj T., Matúšová R., Vooková B. 2003. Biochemistry of zygotic and somatic embryogenesis in silver fir (Abies alba Mill.). Acta Biologica Cracoviensia Series Botanica 45: 59–62.
  • Litvay J.D., Verma D.C., Johnson M.A. 1985. Influence of loblolly pine (Pinus taeda L.) culture medium and its components on growth and somatic embryogenesis of wild carrot (Daucus carota L.). Plant Cell Reports 4: 325–328.
  • Mo L.H., Egertsdotter U., Arnold von S. 1996. Secretion of specific extracellular proteins by somatic embryos of Picea abies in dependent on embryo morphology. Annals of Botany 77: 143–152.
  • Mordhorst A.P., Toonen M.A.J., de Vries S.C. 1997. Plant embryogenesis. Critical Reviews in Plant Sciences 16: 535–576.
  • Namasivayam P. 2007. Acquisition of embryogenic competence during somatic embryogenesis. Plant Cell, Tissue and Organ Culture 90: 1–8.
  • Pullman G.S., Chase K.-M., Skryabina A., Bucalo K. 2009. Conifer embryogenic tissue initiation: improvements by supplementation of medium with D-xylose and D-chiro-inositol. Tree Physiology 29: 147–156.
  • Quiroz-Figueroa F.R., Rojas-Herrera R., Galaz-Avaloz R.M., Loyola-Vargas V.M. 2006. Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell, Tissue and Organ Culture 86: 285–301.
  • Salajova T., Jasik J., Salaj J. 1998. Somatic embryogenesis in hybrid firs Abies alba × Abies cephalonica and Abies alba × Abies numidica. In: Salajova T., Jasik J., Salaj J., (eds). In vitro cultures of conifers. Veda Publishing House of the Slovak Academy of Sciences, Bratislava, pp. 63–69.
  • Stasolla C., Kong L., Yeung E.C., Thorpe T.A. 2002. Maturation of somatic embryos in conifers: morphogenesis, physiology, biochemistry and molecular biology. In Vitro Cellular and Developmental Biology – Plant 38: 93–105.
  • Stasolla C., Yeung E.C. 2007. Cellular ascorbic acid regulates the activity of major peroxidases in the apical poles of germinating white spruce (Picea glauca) somatic embryos. Plant Physiology and Biochemistry 45: 188–198.
  • Sutherland M.W. 1991. The generation of oxygen radicals during host plant responses to infection. Physiological and Molecular Plant Pathology 39: 79–93.
  • Toonen M.A.J., de Vries S.C. 1996. Initiation of somatic embryos from single cells. In: Wang TL, Cuming A, editors. Embryogenesis: the generation of a plant. Bios Scientific Publishers, Oxford, pp. 173–189.
  • Vágner M., Fischerová L., Špacková J., Vondráková Z. 2005. Somatic embryogenesis in Norway spruce. W: S.M. Jain, P.K. Gupta (eds), Protocol for somatic embryogenesis in woody plants. Forestry Science 77 (A): pp. 141–155.
Uwagi
PL
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-358257d4-0927-44d3-a693-e84acdc81bd6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.