Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 3 |
Tytuł artykułu

Remediating Cd-contaminated soils using natural and chitosan-introduced zeolite, bentonite, and activated carbon

Warianty tytułu
Języki publikacji
The effects of in-situ immobilization of heavy metals by applying natural and chitosan-introduced zeolite, bentonite, and activated carbon (AC) were systematically studied to remediate cadmium (Cd)-contaminated soils in a pot experiment using Brassica juncea as the indicator plant. The results show that zeolite, bentonite, and its chitosan composites can increase soil pH and reduce the biological effectiveness of heavy metals. The Brassica juncea dry weight increased with increasing of amendment dosage. Highest values were found for CS-AC, followed by CS-bentonite, CS-zeolite, AC, bentonite, and zeolite. With an amendment dosage of 75 g per pot, Brassica juncea dry weight increased by 41.91%, 39.00%, 27.64%, 35.93%, 23.78%, and 23.58%, respectively, for CS-AC, CS-bentonite, CS-zeolite, AC, bentonite, and zeolite, compared to the control. Cadmium uptake by Brassica juncea was lowest for this dosage. With a dosage of 75 g, 50 g, 75 g, 75 g, 50 g, and 75 g per pot for CS-AC, CS-bentonite, CS-zeolite, AC, bentonite, and zeolite, respectively, Cd uptake decreased by 21.89%, 19.88%, 19.48%, 18.67%, 17.47%, and 13.85%, respectively. Similarly, bioavailable Cd content decreased by 27.38%, 19.29%, 22.83%, 23.22%, 15.74%, and 8.66%, respectively, compared to the control.
Słowa kluczowe
Opis fizyczny
  • School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
  • School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
  • School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
  • School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
  • 1. BASZYŃSKI T. Interference of Cd2+ in functioning of the photosynthetic apparatus of higher plants. Acta Societatis Botanicorum Poloniae, 55 (2), 291, 1986.
  • 2. HE H., NORA F.Y.T., YAO A, QIU R., LI, W.C., YE Z. Growth and Cd uptake by rice (Oryza sativa) in acidic and Cd-contaminated paddy soils amended with steel slag. Chemosphere, 189, 247, 2017.
  • 3. VAREDA J.P., VALENTE A.J.M., DURÃES L. Heavy metals in Iberian soils: Removal by current adsorbents/amendments and prospective for aerogels. Advances in Colloid and Interface Science, 237, 28, 2016.
  • 4. MAHAR A., WANG P., ALI A., GUO Z.Y., AWASTHI M.K., LAHORI A.H., WANG Q., SHEN F., LI R.H., ZHANG Z.Q. Impact of CaO, fly ash, sulfur and Na2S on the (im)mobilization and phytoavailability of Cd, Cu and Pb in contaminated soil. Ecotoxicology and Environmental Safety, 134, 116, 2016.
  • 5. ALI A., GUE D., MAHAR A., WANG P., SHEN F., LI R.H., ZHANG Z. Mycoremediation of potentially toxic trace elements- a biological tool for soil cleanup: a review. Pedosphere, 27 (2), 205, 2017.
  • 6. TICA D., UDOVIC M., LESTAN D. Immobilization of potentially toxic metals using different soil amendments. Chemosphere, 85( 4) 577, 2011.
  • 7. PÉREZ-ESTEBAN J., ESCOLÁSTICO C., MOLINER A., MASAGUER A., RUIZ-FERNÁNDEZ J. Phytostabilization of metals in mine soils using Brassica juncea in combination with organic amendments. Plant and Soil, 377 (1-2), 97, 2014.
  • 8. HUSSAIN L.A., ZHANG Z., GUO Z., MAHAR A., LI R., KUMAR A.M., ALI S.T., KUMBHAR F., WANG P., SHEN F., ZHAO J., HUANG H. Potential use of lime combined with additives on (im)mobilization and phytoavailability of heavy metals from Pb/Zn smelter contaminated soils. Ecotoxicology and Environmental Safety, 145, 313, 2017.
  • 9. RAFIQ M.T., AZIZ R., YANG X., XIAO W., RAFIQ M.K., ALI B., LI T. Cadmium phytoavailability to rice (Oryza sativa L.) grown in representative Chinese soils. A model to improve soil environmental quality guidelines for food safety. Ecotoxicology and Environmental Safety, 103 (1), 101, 2014.
  • 10. LI G., QIU J., YIN C. Study on calculating losses of cropland degradation. Chinese Agricultural Science Bulletin, 25 (3), 230, 2009.
  • 11. YAN H., LIN G. Usage of chitosan on the complexation of heavy metal contents and vertical distribution of Hg (II) and Cr (VI) in different textural artificially contaminated soils. Environmental Earth Sciences, 73 (5), 2483, 2015.
  • 12. GONZÁLEZ-NÚÑEZ R., ALBA M.D., ORTA M.M., VIDAL M., RIGOL A. Remediation of metal-contaminated soils with the addition of materials – Part I: Characterization and viability studies for the selection of non-hazardous waste materials and silicates. Chemosphere, 85 (9), 1511, 2011.
  • 13. SHAHEEN S.M., TSADILAS C.D., RINKLEBE J. 2015. Immobilization of soil copper using organic and inorganic amendments. Journal of plant nutrition and soil science, 178 (1), 112, 2015.
  • 14. GONZÁLEZ-NÚÑEZ R., ALBA M.D., ORTA M.M., VIDAL M., RIGOL A. Remediation of metal-contaminated soils with the addition of materials – Part II: Leaching tests to evaluate the efficiency of materials in the remediation of contaminated soils. Chemosphere, 87 (8), 829, 2012.
  • 15. HUANG R., YANG B., LIU Y. Simultaneous adsorption of aniline and Cr (VI) ion by activated carbon/chitosan composite. Journal of applied polymer, 131 (4), 1, 2014.
  • 16. CRINI G. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Progress of Polymer Science, 30 (1), 38, 2005.
  • 17. TRIPATHI N., CHOPPALA G., SINGH R.S. Evaluation of modified chitosan for remediation of zinc contaminated soils. Journal of Geochemical Exploration http//, 2016
  • 18. ZHANG L., ZENG Y.X., CHENG Z.J. Removal of heavy metal ions using chitosan and modified chitosan: A review. Journal of Molecular Liquids, 214, 175, 2016.
  • 19. MUZZARELLI R.A.A. Industrial Production and Application. Chitin, Pergamon Press, Oxford, England, 207, 1977.
  • 20. LI M., ZHANG Z., LI R., WANG J., ALI A. Removal of Pb (II) and Cd (II) ions from aqueous solution by thiosemicarbazide modified chitosan. International Journal of Biological Macromolecules, 86, 876, 2016.
  • 21. BORNET A., TEISSEDRE P.L. Chitosan, chitin-glucan and chitin effects on minerals (iron, lead, cadmium) and organic (ochratoxin A) contaminants in wines. European Food Research and Technology, 226 (4), 681, 2008.
  • 22. XU Y., LIANG X.F., QIN X., HUANG Q.Q., WANG L., SUN Y.B. Remediation of heavy metal-polluted agricultural soils using clay minerals: A review. Pedosphere, 27 (2), 193, 2017.
  • 23. SUN Y., Wu Q.T., LEE C.C.C., LI B.Q., LONG X.X. Cadmium sorption characteristics of soil amendments and its relationship with the cadmium uptake by hyperaccumulator and normal plants in amended soils. International Journal of Phytoremediation, 16 (5), 486, 2014.
  • 24. Fu F., Wang Q. Removal of heavy metals from wastewaters: a review. Journal of Environmental Management, 92, 407, 2011.
  • 25. KUMARARAJA P., MANJAIAH K.M., DATTA S.C., SARKAR B. Remediation of metal contaminated soil by aluminium pillared bentonite: Synthesis, characterisation, equilibrium study and plant growth experiment. Applied Clay Science, 137, 115, 2017.
  • 26. LI P., AN Z., ZHAO T., LIU B., ZHANG C., ZHANG J., YANG M., ZHANG D., LI Y. Effects of natural zeolite addition on Cd in soil and tamato biomass. Ecology and Environmental Sciences, 20 (6-7), 1147, 2011.
  • 27. LIU X., ZHAO X., MA Z. Application of bentonite and zeolite in dealing soil contaminated by Cd. Journal of Soil and Water Conservation, 21 (6), 83, 2007.
  • 28. HAMIDPOUR M., KALBASI M., AFYUNI M., SHARIATMADARI H., HOLM P., HANSEN G. Sorption hysteresis of Cd (II) and Pb (II) on natural zeolite and bentonite. Journal of Hazardous of Materials, 181 (1-3), 686, 2010.
  • 29. SUN Y., LI Y., XU Y., LIANG X., WANG L. In situ stabilization remediation of cadmium (Cd) and lead (Pb) co-contaminated paddy soil using bentonite. Appled Clay Science, 105-106, 200, 2015.
  • 30. LI J., LI Y., Meng Q. Removal of nitrate by zero-valent iron and pillared bentonite. Journal of Hazardous Materials, 174 (1-3), 188, 2010.
  • 31. BŘENDOVÁ K., ZEMANOVÁ V., PAVLÍKOVÁ D., TLUSTOŠ P. Utilization of biochar and activated carbon to reduce Cd, Pb and Zn phytoavailability and phytotoxicity for plants. Journal of Environmental Management, 181, 637, 2016.
  • 32. EBBS S.D., LASAT M.M., BRADY D.J., CORNISH J., GORDON R., KOCHIAN L.V. Phytoextraction of cadmium and zinc from a contaminated soil. Journal of Environmental Quality, 26 (5), 1424, 1997.
  • 33. EBBS S.D., KOCHIAN L.V. Phytoextraction of Zinc by oat (Avena sativa), barley (Hordeum vulgare), and Indian mustard (Brassica juncea). Environmental Science and Technology, 32 (6), 802, 1998.
  • 34. CHEN H., ZHENG C., TU C., SHEN Z. Chemical ethods and phytoremediation on soil contaminated with heavy metals. Chemosphere, 41 (1-2), 229, 2000.
  • 35. TRIPATHI R.D., VAJPAYEE P., SINGH N., RAI U.N., KUMAR A., ALI M.B., KUMAR B., YUNUS M. Efficacy of various amendments for amelioration of fly-ash toxicity: growth performance and metal composition of Cassiasiamea Lamk. Chemosphere, 54 (11), 1581, 2004.
  • 36. JI P., SUN T., SONG Y., ACKLAND M.L., LIU Y. Strategies for enhancing the phytoremediation of cadmium-contaminated agricultural soils by Solanum nigrum L. Environmental Pollution, 159 (3), 762, 2011.
  • 37. ZHANG Q., LI J., XU M., SONG Z., ZHOU S. Effect of amendments on bioavailability of cadmium and zinc in compound contaminated red soil. Journal of Agro-Environment Science, 25 (4), 861, 2006.
  • 38. BOLAN N.S., CHOPPALA G., KUNHIKRISHNAN A., PARK J., NAIDU R. Microbial transformation of trace elements in soils in relation to bioavailability and remediation. Reviews of Environmental Contamination and Toxicology. 225, 1, 2013.
  • 39. YANG L., CHEN Z., LIU Y., WANG Y. Effects of lime and activated carbon on remedying chromium contaminated soil. Acta Pedologica Sinica, 49 (3), 518, 2012.
  • 40. SHAHEEN S., RINKLEBE J. Impact of emerging and low cost alternative amendments on the (im)mobilization and phytoavailability of Cd and Pb in a contaminated floodplain soil. Ecological Engineering, 74 (1), 319, 2015.
  • 41. GUO Z., HU X., AO Y. Effect of chitosan on the available contents and vertical distribution of Cu2+ and Cd2+ in different textural soils. Journal of Hazardous Materials, 167 (1-3), 1148, 2009.
  • 42. BORSAGLI F.G.L.M., MANSUR A.A.P., CHAGAS P., OLIVERIRA L.C.A., MANSUR H.S. O-carboxymethyl functionalization of chitosan: Complexation and adsorption of Cd (II) and Cr (VI) as heavy metal pollutant ions. Reactive and Functional Polymers, 97, 37, 2015.
  • 43. ZENG L., CHEN Y., ZHANG Q., GUO X., PENG Y., XIAO H., CHEN X., LUO J. Adsorption of Cd (II), Cu(II) and Ni(II) ions by cross-linking chitosan/rectoritenano-hybrid composite microspheres. Carbohydrate Polymers, 130, 333, 2015.
  • 44. EROSA M.S.D., EROSA T.I.S., MEDINA R.N., MENDOZA M.A., RODRIGUEZ, GUIBAL E. Cadmium sorption on chitosan sorbents: kinetic and equilibrium studies. Hydrometallurgy, 61 (3), 407, 2011.
  • 45. NGAH W.S.W., TEONG L.C., HANAFIAH M.A.K.M. Adsorption of dye and heavy metal ions by chitosan composite: A review. Carbohydrate Polymers, 83 (4), 1446, 2011.
  • 46. KAYA A., ÖREN A.H. Adsorption of zinc from aqueous solutions to bentonite. Journal of Hazardous of Materials, 125 (1-3), 183, 2005.
  • 47. HU Z., ZHANG G., WANG G., ZHAO Q., LIU X., CAO X., CAO Z. Effect of soil amendments on cadmium and lead contents in tobacco. Acta Pedologica Sinica, 43 (2), 233, 2006.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.