PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 76 | 09 |

Tytuł artykułu

Challenges in using anesthesia for open chest and aorta surgery in swine

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Anesthesia for aorta surgery in pigs remains challenging due to the requirements for mechanical ventilation and the need for maintaining adequate homeostasis. We report an improved anesthesia protocol in an in vivo animal model to test a novel bacterial nanocellulose (BNC) within the ‘Kardio-BNC’ trial. Forty-four 6-month-old DanBred pigs comprising 6 males and 38 females (body weight ca. 82 kg) underwent implantation of pericardium reconstructive patches (n = 8), thoracic aorta prostheses (n = 15), or both procedures (n = 17) to test the biocompatibility of the novel BNC. The primary endpoint was 90-day survival, and the secondary outcome was death for any reason before reaching the study endpoint. Univariate analysis and linear regression were used to identify variables associated with premature mortality. Of the 44 pigs that underwent surgery, 10 (23%) were lost intra-operatively because of arrhythmia (n = 1), anesthesiological causes (n = 4), or surgical complications (n = 5). Modifications to tracheal intubation, tube fixation, temperature maintenance, and vascular catheterization increased the survival rate to 91% in the last quartile of the animals that underwent surgery. Of the 34 animals that survived surgery, n = 10 (29%) were lost post-operatively because of hematoma (n = 2), pneumothorax (n = 1), or infection (n = 7). Infection was associated with the type of surgery (highest prevalence in animals undergoing the combined procedure; p = 0.02), azaperone dose (p = 0.03), intra-operative heart rate variability (p = 0.03), and crystalloid transfusion (p = 0.04). The anesthesiological strategies and modifications to surgery described here allowed safe open chest and aorta surgery in up to 91% of the procedures performed

Słowa kluczowe

Wydawca

-

Rocznik

Tom

76

Numer

09

Opis fizyczny

p.517-524,fig.,ref.

Twórcy

autor
  • Department of Cardiac Anesthesiology, Medical University of Gdansk, ul.Debinki 7, 80-211 Gdansk, Poland
  • Department of Cardiac and Vascular Surgery, Medical University of Gdansk, ul.Debinki 7, 80-211 Gdansk, Poland
  • Department of Cardiac and Vascular Surgery, Medical University of Gdansk, ul.Debinki 7, 80-211 Gdansk, Poland
autor
  • Wetprom, Veterinary Clinic, Zwyciestwa 333, 75-001 Koszalin, Poland
  • Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, ul.Wita Stwosza 59, 80-308 Gdansk, Poland
autor
  • Department of Cardiac Anesthesiology, Medical University of Gdansk, ul.Debinki 7, 80-211 Gdansk, Poland
autor
  • Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, ul.Wita Stwosza 59, 80-308 Gdansk, Poland
autor
  • Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, ul.Wita Stwosza 59, 80-308 Gdansk, Poland

Bibliografia

  • 1. Andersen H. R., Knudsen L. L., Hasenkam J. M.: Transluminal implantation of artificial heart valves. Description of a new expandable aortic valve and initial results with implantation by catheter technique in closed chest pigs. Eur. Heart J. 1992, 13, 704-708.
  • 2. Bomzon A.: You and your research report: implementing the ARRIVE reporting guideline. Lab. Anim. 2017, 51, 121-123, doi: 10.1177/0023677216679442.
  • 3. Brzeziński M., Bury K., Dąbrowski L., Holak P., Sejda A., Pawlak M., Jagielak D., Adamiak Z., Rogowski J.: The new 3D printed left atrial appendage closure with a novel holdfast device: a pre-clinical feasibility animal study. PLoS ONE 2016, 11, e0154559, doi: 10.1371/journal.pone.0154559.
  • 4. Committee for veterinary medicinal products. Azaperone – summary report. 1997. EMEA/MRL/300/97-Final.
  • 5. Directive 2010/63/EU of the European Parliament and of the council of 22 September 2010 on the protection of animals used for scientific purposes. Offic. J. Eur. Union 2010, 276, 33-79.
  • 6. Długa A., Kaczmarek H.: Characterisation of composites of bacterial cellulose and poly(vinyl alcohol) obtained by different methods. Fibres and Textiles in Eastern Europe 2014, 108, 69-74.
  • 7. Fabrega E., Manteca X., Font J., Gispert M., Carrion D., Velarde A., Ruizde-la-Torre J. L., Diestre A.: Effects of halothane gene and pre-slaughter treatment on meat quality and welfare from two pig crosses. Meat Sci. 2002, 62, 463-472, doi: 10.1016/s0309-1740(02)00040-2.
  • 8. Gallegos R. P., Nockel P. J., Rivard A. L., Bianco R. W.: The current state of in vivo pre-clinical animal models for heart valve evaluation. J. Heart Valve Dis. 2005, 14, 423-432.
  • 9. Harvey L., Bianco R., Lahti M., Carney J., Zhang L., Robinson N.: CarpentierEdwards aortic pericardial bioprosthetic valve as a valid control in preclinical in vivo ovine studies. Eur. J. Pharmacol. 2015, 759, 192-199, doi: 10.1016/j.ejphar.2015.03.033.
  • 10. Iqbal J., Chamberlain J., Francis S. E., Gunn J.: Role of animal models in coronary stenting. Ann. Biomed. Eng. 2016, 44, 453-465, doi: 10.1007/s10439-015-1414-4.
  • 11. ISO 5840:2015 Cardiovascular implants – cardiac valve prostheses.
  • 12. Kilkenny C., Browne W. J., Cuthill I. C., Emerson M., Altman D. G.: Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010, 8, e1000412, doi: 10.1371/journal.pbio.1000412.
  • 13. Klemm D., Kramer F., Moritz S., Lindstrom T., Ankerfors M., Gray D., Dorris A.: Nanocelluloses: a new family of nature-based materials. Angew. Chem. Int. Ed. Engl. 2011, 50, 5438-5466, doi: 10.1002/anie.2010001273.
  • 14. Kołaczkowska M., Siondalski P., Kowalik M. M., Pęksa R., Długa A., Zając W., Dederko P., Kołodziejska I., Malinowska-Pańczyk E., Sinkiewicz I., Staroszczyk H., Śliwińska H., Stanisławska A., Szkodo M., Pałczyńska P., Jabłoński G., Borman A., Wilczek P.: Assessment of the usefulness of bacterial cellulose produced by Gluconacetobacter xylinus E25 as a new biological implant. Mat. Sci. Eng. C 2019, 97, 302-312, doi: 10.1016/j.msec.2018.12.016.
  • 15. Mello L. R., Acantara B. B., Bermardes C. I., Boer V. H.: Late favorable results of duroplasty with biocellulose: clinical retrospective study of 20 cases. Arq. Bras. Neurocir. 2012, 31, 128-134.
  • 16. Monreal G., Sherwood L. C., Sobieski M. A., Giridharan G. A., Slaughter M. S., Koenig S. C.: Large animal models for left ventricular assist device research and development. ASAIO J 2014, 60, 2-8. doi: 10.1097/MAT.0000000000000005.
  • 17. Petersen N., Gatenholm P.: Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl. Microbiol. Biotechnol. 2011, 91, 1277-1286, doi: 10.1007/s00253-011-3432-y.
  • 18. Rajwade J. M., Paknikar K. M., Kumbhar J. V.: Applications of bacterial cellulose and its composites in biomedicine. Appl. Microbiol. Biotechnol. 2015, 99, 2491-2511, doi: 10.1007/s00253-015-6426-3.
  • 19. Rashid S. T., Salacinski H. J., Hamilton G., Seifalian A. M.: The use of animal models in developing the discipline of cardiovascular tissue engineering: a review. Biomaterials 2004, 25, 1627-1637, doi: 10.1016/s0142-9612(03)00522-2

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-35757b19-58b2-4c34-b63b-437b81aeabaa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.