Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 1 |
Tytuł artykułu

Enhancing profitability of ethanol fermentation through gamma ray mutagenesis of Saccharomyces cerevisiae

Warianty tytułu
Języki publikacji
Invertase has a vital role in ethanol fermentation, especially on sucrose-containing media. In this study, catabolite-resistant mutants of Saccharomyces cerevisiae were isolated through gamma ray mutagenesis with improved productivity of ethanol and invertases. Enzyme productivity of mutant yeast was compared with that of the parent. Various fermentation parameters were optimized, including substrate concentration, pH, and temperature on the production of invertase and ethanol. Applying optimized conditions (pH 4.6, 37ºC) at lab scale, industrial scale experiments in 300 m³ fermenters were performed. Mutants had completed fermentation with high efficiency in 28 hrs irrespective of parents that took 36 hrs. The mutant obtained is of great commercial value as it has the potential to enhance the overall profitability of the fermentation process through advancement in the quality of the final product.
Słowa kluczowe
Opis fizyczny
  • Jhang-Campus, University of Veterinary and Animal Sciences, Lahore, Pakistan
  • Jhang-Campus, University of Veterinary and Animal Sciences, Lahore, Pakistan
  • Jhang-Campus, University of Veterinary and Animal Sciences, Lahore, Pakistan
  • Poultry Research Institute, Rawalpindi, Pakistan
  • Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
  • Livestock and Dairy Development, Punjab, Pakistan
  • Jhang-Campus, University of Veterinary and Animal Sciences, Lahore, Pakistan
  • Department of Chemistry, Karakoram International University, Gilgit-Baltistan, Pakistan
  • Department of Chemistry, The University of Lahore, Lahore, Pakistan
  • Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
  • Department of Chemistry, The University of Lahore, Lahore, Pakistan
  • 1. SANCHEZ O.J., CARDONA C.A. Trends in biotechnological production of fuel ethanol from different feed stocks. Bioresour Technol. 99, 5270, 2008.
  • 2. BOSAK M., HAJDUOVA Z., MAJERNIK M., ANDREJOVSKY P. Experimental-Energy Combustion of Biomass Combined with Coal in Thermal Power Plants. Pol. J. Environ. Stud. 24 (4), 1517, 2015.
  • 3. KHAIRUDDIN N., MUNAF L.A., HASSAN M.A., HALIMOON N., AZLINA W., KARIM W.A. Biogas Harvesting from Organic Fraction of Municipal Solid Waste as a Renewable Energy Resource in Malaysia: A Review. Pol. J. Environ. Stud. 24 (4), 1477, 2015.
  • 4. WOCH F., HERNIK J., WYROZUMSKA P., CZESAK B. Residual Woody Waste Biomass as an Energy Source – Case Study. Pol. J. Environ. Stud. 24 (1), 355, 2015.
  • 5. WU R., ZHANG J., BAO Y., TONG S. Using a Geographically Weighted Regression Model to Explore the Influencing Factors of CO₂ Emissions from Energy Consumption in the Industrial Sector. Pol. J. Environ. Stud. 25 (6), 2641, 2016.
  • 6. KASIULIENE A., PAULAUSKAS V., KUMPIENE J. Chelant-Assisted Accumulation of Cd, Cu, and Zn in Rapeseed (Brassica napus L.) Biomass as a Renewable Energy Feedstock. Pol. J. Environ. Stud. 25 (5), 1985, 2016.
  • 7. KHAIRUDDIN N., MUNAF L.A., HASSAN M.A., HALIMOON N., AZLINA W., GHANI A.K. High Solid Anaerobic Co-Digestion of Household Organic Waste with Cow Manure for Mass and Energy Recovery. Pol. J. Environ. Stud. 25 (4), 1549, 2016.
  • 8. QAIO Y., MIAO S., YUE S., WU H., HAN X. How 23-year Continuous Soybean Cultivation Led to More SOC and Thermal Energy Stored in Mollisol Micro-Aggregates. Pol. J. Environ. Stud. 25 (3), 1215, 2016.
  • 9. RYBICKI S.M. Role of Primary Sludge Hydrolysis in Energy Recovery from Municipal Wastewater Sludge. Pol. J. Environ. Stud. 23 (3), 1033, 2014.
  • 10. BRODZINSKI Z., KRYSZK H., KUROWSKA K. Market of Producers and Processors of Agricultural Biomass for Energy Purposes. Pol. J. Environ. Stud. 23 (2), 619, 2014.
  • 11. STOLARSKI M.J., KRZYZANIAK M., SZCZKOWSKI S., TWORKOSKI J., BIENIEK A. Dendromass Derived from Agricultural Land as Energy Feedstock. Pol. J. Environ. Stud. 22 (2), 511, 2013.
  • 12. PETERS D. Carbohydrates for fermentation.Biotechnol J. 1, 806, 2006.
  • 13. RINCON A.M., CODON A.C., CASTREJON F., BENITEZ T. Improved properties of baker’s yeast mutants resistant to 2-deoxy-d-glucose. Appl Environ Microbiol. 67, 4279, 2001.
  • 14. OLSSON L., NIELSEN J. The role of metabolic engineering in the improvement of Saccharomyces cerevisiae: utilization of industrial media. Enzyme and Microbial Technol. 26, 785, 2000.
  • 15. TSOLMONBAATAR A., HASHIDA K., SUGIMOTO Y., WATANABE D., FURUKAWA S., TAKAGI H. Isolation of baker’s yeast mutants with proline accumulation that showed enhanced tolerance to baking-associated stresses. Int J Food Microbiol. 238, 233, 2016.
  • 16. Rincón A.M., Codón A.C., Castrejón F., Benítez T. Improved Properties of Baker’s Yeast Mutants Resistant to 2-Deoxy-ᴅ-Glucose. Appl Environ Microbiol. 67 (9), 4279, 2001. Repetition!
  • 17. TAKESHIGE K., OUCHI K. Effects of yeast invertase on ethanol production in molasses.J FermenBioeng. 79, 513-515, 1995.
  • 18. PRESCOTT S., DUNN’S A. Industrial Microbiology. 4th edition, CBS Publishers and Distributors, New Dehli, India; 2002.
  • 19. CONVERTI A., ARNI S., SATO S., DE CARVALHO J.C.M., AQUARONE E. Simplified modeling of fed-batch alcoholic fermentation of sugarcane blackstrapmolasses. BiotechnolBioeng. 84, 88, 2003.
  • 20. SRIDHAR V., ELLIOTT R.L. On the development of a simple down welling long wave radiation scheme. Agric Forest Meteorol. 112, 237, 2002.
  • 21. RAJOKA M.I., FERHAN M., KHALID A.M.Kinetics and thermodynamics of ethanol production by a thermotolerant mutant of Saccharomyces cerevisiae in a microprocessor-controlled bioreactor. LettApplMicrobiol. 40, 316, 2005.
  • 22. ARSHAD M., KHAN Z.M., REHMAN K., SHAH F.A., RAJOKA M.I. Optimization of process variables for minimization of byproducts formation during fermentation of blackstrap molasses to ethanol at industrial scale. LettApplMicrobiol. 47, 410, 2008.
  • 23. REEVES M. Kinetic analysis of Kluyveromycesmarxianus yeast strain. M.Sc. Thesis. Department Bio. Agri. Eng. B. S., Louisiana State University; 2001.
  • 24. ZHANG Y., MOQTADERI Z., RATTNER B.P., et al. Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo. Nat StructMol Bio. 16, 847, 2009.
  • 25. HAQ I., SHAFIQ K., ALI S. Kinetics of phosphate ions induced invertase synthesis by Saccharomyces cerevisiae. Int J Agri Bio. 6, 363, 2004.
  • 26. BAIG M.A., SHAFIQ K., MIRZA S., ALI S., IKRAM-UL-HAQ. Effect of urea as an inducer of β-fructofuranosidase in Saccharomyces fermentation. Pak J Nutrition. 2, 106, 2003.
  • 27. EGOROV S.N., SEMENOVA I.N., MAKSIMOV V.N. Mutual effect of invertase and acid phosphatase from the yeast Saccharomyces cerevisiae on their secretion into culture media. Mikrobiologiia. 69, 34, 2000.
  • 28. GOMEZ-LORENZO M.G., SPAHN C.M., AGRAWAL R.K., ET AL. hree-dimensional cryo-electron microscopy localization of EF2 in the Saccharomyces cerevisiae 80S ribosome at 17.5 A resolution. EMBO J. 19, 2710, 2000.
  • 29. SHAFIQ K., ALI S., IKRAM-UL-HAQ. Temperature optima for invertase secretion by yeast in synthetic medium. Pak J Life Soc Sci. 2, 21, 2004.
  • 30. MIZUNAGA T., IKACZ J.S., RODRIGUEZ L., HACKEL R.A., LAMPEN J.O. Temperature-sensitive forms of large and small invertase in a mutant derived from a Suc1 strain of Saccharomyces cerevisiae. Mol Cell Biol. 1, 460, 1981.
  • 31. KAUR N., SHARMA A.D. Production, optimization and characterization of extracellular invertase by an actinomycetes strain. J SciInd Res. 64, 515, 2005.
  • 32. SZALATKIEWICZ J. Energy Recovery from Waste of Printed Circuit Boards in Plasmatron Plasma Reactor. Pol. J. Environ. Stud. 23 (1), 277, 2014.
  • 33. ZHANG F, CAO G. Resilience of Energy and CO₂ Exchange to a Summer Heatwave in an Alpine Humid Grassland on the Qinghai-Tibetan Plateau. Pol. J. Environ. Stud. 26 (1), 385, 2017.
  • 34. LI W., ZHANG H. Decomposition Analysis of Energy Efficiency in China’s Beijing-Tianjin-Hebei Region. Pol. J. Environ. Stud. 26 (1), 189-203, 2017.
  • 35. BIERANOWSKI J., OLKOWSKI T. The Concept of an Energy Self-Sufficient Farm System Compatible with Sustainable Development in a Selected Region in Poland. Pol. J. Environ. Stud. 25 (2), 529, 2016.
  • 36. CARNOGURSKA M., PRIHODA M., ZELENAKOVA M., LAZAR M., BRESTOVIC T. Modeling the Profit from Hydropower Plant Energy Generation Using Dimensional Analysis. Pol. J. Environ. Stud. 25 (1), 73, 2016.
  • 37. STOLARSKI M.J., KRZYZANIAK M., WARMINSKI K., TWORKOSKI J., SZCZKOWSKI S. Willow Biomass Energy Generation Efficiency and Greenhouse Gas Reduction Potential. Pol. J. Environ. Stud. 24 (6), 2627, 2015.
  • 38. WEN L., CAO Y., WENG J. Factor Decomposition Analysis of China’s Energy-Related CO₂ Emissions Using Extended STIRPAT Model. Pol. J. Environ. Stud. 24 (5), 2261, 2015.
  • 39. MAJ G. Diversification and Environmental Impact Assessment of Plant Biomass Energy Use. Pol. J. Environ. Stud. 24 (5), 2055, 2015.
  • 40. SHEN N., ZHOU J., ZOU W. Energy Efficiency Measures and Convergence in China, Taking into Account the Effects of Environmental and Random Factors. Pol. J. Environ. Stud. 24 (1), 257, 2015.
  • 41. KWASNIEWSKI J., DOMINIK I., KSZUBA F. Energy Harvesting System Based on Ionic Polymer-Metal Composites – Identification of Electrical Parameters. Pol. J. Environ. Stud. 23 (6), 2339, 2014.
  • 42. GUMULA S., PYTEL K., PIASKOWSKA-SILARSKA M. Environmental and Economic Benefits of Using Kinetic Wind Energy to Generate Electricity. Pol. J. Environ. Stud. 23 (6), 2315, 2014.
  • 43. STOLARSKI M.J., KRZYZANIAK M., SZCZKOWSKI S., TWORKOSKI J., BIENIEK A. Short Rotation Woody Crops Grown on Marginal Soil for Biomass Energy. Pol. J. Environ. Stud. 23 (5), 1727, 2014.
  • 44. WOCH F., HERNIK J., WIKLINA U., TOLAKA M. Energy Autarky of Rural Municipality Created on the Basis of Renewable Energy Resources. Pol. J. Environ. Stud. 23 (4), 1441, 2014.
  • 45. GULA A., GORYL W. Toward a More Environmentally Friendly Use of Biomass for Energy Purposes in Poland. Pol. J. Environ. Stud. 23 (4), 1377, 2014.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.