PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 71 | 1 |

Tytuł artykułu

Aggregation-promoted expansion of neuraly committed human umbilical cord blood progenitors in vitro

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Human umbilical cord blood (HUCB) has been established as a promising source of hematopoietic as well as various non- hematopoietic stem cell populations. This offers numerous advantages of HUCB stem/progenitor cells for therapies, however in vitro conditions that contribute to long term propagation of proliferating undifferentiated cells have not yet been established. Here we evaluate culture conditions promoting spheroid aggregates/neurospheres formation which, together with serum withdrawal and mitogenes treatments in strictly defined media, maintain population of HUCB progenitor cells in undifferentiated and dividing state exhibiting neurogenic potential in vitro. Our results indicate that formation and maintenance of three-dimensional aggregates enhanced by cell culture rotating motion, is crucial for high and prolonged expression of genes and proteins characteristic for cord blood stem cells and their further neural commitment.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

71

Numer

1

Opis fizyczny

p.1-11,fig.,ref.

Twórcy

autor
  • NeuroRepair Department, Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
  • NeuroRepair Department, Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland;

Bibliografia

  • Ali H, Jurga M, Kurgonaite K, Forraz N, McGuckin C (2009) Defined serum-free culturing conditions for neural tissue engineering of human cord blood stem cells. Acta Neurobiol Exp (Wars) 69: 12-23.
  • Bjornson CR, Rietze RL, Reynolds BA, Magli MC, Vescovi AL (1999) Turning brain into blood: a hematopoietic fate adopt­ed by adult neural stem cells in vivo. Science 283: 534-537.
  • Buzanska L, Machaj EK, Zabłocka B, Pojda Z, Domańska- Janik K (2002) Human cord blood-derived cells attain neu­ronal and glial features in vitro. J Cell Sci 115: 2131-2138.
  • Buzanska L, Jurga M, Stachowiak EK, Stachowiak MK, Domańska-Janik K (2006) Neural stem-like cell line derived from a nonhematopoietic population of human umbilical cord blood. Stem Cells Dev 15: 391-406.
  • Carpenedo RL, Sargent CY, McDevitt TC (2007) Rotary suspension culture enhances the efficiency, yield, and homogeneity of embryoid body differentiation. Stem Cells 25: 2224-2234.
  • Chua SJ, Bielecki R, Wong CJ, Yamanaka N, Rogers IM, Casper RF (2009) Neural progenitors, neurons and oligodendrocytes from human umbilical cord blood cells in a serum-free, feeder-free cell culture. Biochem Biophys Res Commun 379: 217-221.
  • Doetsch F (2003) The glial identity of neural stem cells. Nat Neurosci 6: 1127-1134.
  • Forraz N, Pettengell R, McGuckin CP (2004) Characterization of a lineage-negative stem-progenitor cell population optimized for ex vivo expansion and enriched for LTC- IC. Stem Cells 22: 100-108.
  • Fuchs E, Tumbar T, Guasch G (2004) Socializing with the neigh­bors: stem cells and their niche. Cell Mar 116: 769-778.
  • Greschat S, Schira J, Küry P, Rosenbaum C, de Souza Silva MA, Kögler G, Wernet P, Müller HW (2008) Unrestricted somatic stem cells from human umbilical cord blood can be differentiated into neurons with a dopaminergic phe- notype. Stem Cells Dev 17: 221-232.
  • Habich A, Jurga M, Markiewicz I, Lukomska B, Bany- Laszewicz U, Domanska-Janik K (2006) Early appear­ance of stem/progenitor cells with neural-like characteris­tics in human cord blood mononuclear fraction cultured in vitro. Exp Hematol 34: 914-925.
  • Hamilton GA, Westmorel C, George AE (2001) Effects of medium composition on the morphology and function of rat hepatocytes cultured as spheroids and monolayers. In Vitro Cell Dev Biol Anim 37: 656-667.
  • Herzog EL, Chai L, Krause DS (20030 Plasticity of marrow- derived stem cells. Blood 102: 3483-3493.
  • Jablonska A, Kozlowska H, Markiewicz I, Domanska-Janik K, Lukomska B (2010) Transplantation of neural stem cells derived from human cord blood to the brain of adult and neonatal rats. Acta Neurobiol Exp 70: 337-350.
  • Jurga M, Markiewicz I, Sarnowska A, Habich A, Kozlowska H, Lukomska B, Buzanska L, Domanska-Janik K (2006) Neurogenic potential of human umbilical cord blood: neural-like stem cells depend on previous long-term cul­ture conditions. J Neurosci Res 83: 627-637.
  • Kucia M, Halasa M, Wysoczynski M, Baskiewicz-Masiuk M, Moldenhawer S, Zuba-Surma E, Czajka R, Wojakowski W, Machalinski B, Ratajczak MZ (2007) Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human cord blood: preliminary report. Leukemia 21: 297-303.
  • Leor J, Guetta E, Feinberg MS, Galski H, Bar I, Holbova R, Miller L, Zarin P, Castel D, Barbash IM, Nagler A (2006) Human umbilical cord blood-derived CD133+ cells enhance function and repair of the infarcted myocardium. Stem Cells 24: 772-780.
  • Mahoney MJ, Saltzman WM (2001) Transplantation of brain cells assembled around a programmable synthetic microenvironment. Nat Biotechnol 19: 934-939.
  • McGuckin CP, Forraz N, Allouard Q, Pettengell R (2004) Umbilical cord blood stem cells can expand hematopoi­etic and neuroglial progenitors in vitro. Exp Cell Res 295: 350-359.
  • McGuckin CP, Basford C, Hanger K, Habibollah S, Forraz N (2009) Cord blood revelations: the importance of being a first born girl, big, on time and to a young mother! Early Hum Dev 83: 733-741.
  • Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR (2000) Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290: 1779-1782.
  • Pfaffl MW (2001) A new mathematical model for relative quan­tification in real-time RT-PCR. Nucleic Acids Res 29: e45.
  • Rosada C, Justesen J, Melsvik D, Ebbesen P, Kassem M (2003) The human umbilical cord blood: a potential source for osteoblast progenitor cells. Calcif Tissue Int 72: 135-142.
  • Sun B, Jeong YH, Jung JW, Seo K, Lee YS, Kang KS (2007) Regulation of human umbilical cord blood-derived multi­potent stem cells by autogenic osteoclast-based niche-like structure. Biochem Biophys Res Commun 357: 92-98.
  • Theise ND, Wilmut I (2003) Cell plasticity: flexible arrange­ment. Nature 425: 21.
  • Tropel P, Platet N, Platel JC, Noël D, Albrieux M, Benabid AL, Berger F (2006) Functional neuronal differentiation of bone marrow-derived mesenchymal stem cells. Stem Cells 24: 2868-2876.
  • Witusik-Perkowska M, Rieske P, Hulas-Bigoszewska K, Zakrzewska M, Stawski R, Kulczycka-Wojdala D, Bienkowski M, Stoczynska-Fidelus E, Gresner SM, Piaskowski S, Jaskolski DJ, Papierz W, Zakrzewski K, Kolasa M, Ironside JW, Liberski PP (2010) Glioblastoma-derived spheroid cul­tures as an experimental model for analysis of EGFR anoma­lies. J Neurooncol [Epub ahead of print].
  • Zhang L, Yang R, Han ZC (2006) Transplantation of umbil­ical cord blood-derived endothelial progenitor cells: a promising method of therapeutic revascularisation. Eur J Haematol 76: 1-8.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-35179bca-a9ba-4f7e-8480-2733e1475a4b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.