PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 27 | 4 |

Tytuł artykułu

Relation between soil temperature and biophysical parameters in Indian mustard seeds

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Temporal changes in surface soil temperature were studied in winter crop. Significant changes in bare and cropped soil temperature were revealed. Air temperature showed a statistically positive and strong relationship (R2 = 0.79** to 0.92**) with the soil temperature both at morning and afternoon hours. Linear regression analysis indicated that each unit increase in ambient temperature would lead to increase in minimum and maximum soil temperatures by 1.04 and 1.02 degree, respectively. Statistically positive correlation was revealed among biophysical variables with the cumulative surface soil temperature. Linear and non-linear regression analysis indicated 62-69, 72-86 and 72-80% variation in Leaf area index, dry matter production and heat use efficiency in Indian mustard crop as a function of soil degree days. Below 60% variation in yield in Indian mustard was revealed as a function of soil temperature. In contrast, non-significant relationship between oil content and soil temperature was found, which suggests that oil accumulation in oilseed crops was not affected significantly by the soil temperature as an independent variable.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

4

Opis fizyczny

p.359-367,fig.,ref.

Twórcy

autor
  • Division of Crop Production, CISH, Rehmankhera, Lucknow, Uttar Pradesh, India
  • Division of Agricultural Physics, Indian Agricultural Research Institute, New Delhi,India

Bibliografia

  • AdakT.,KumarG., Sharma P.K., SrivastavaA.K., and Chakravarty N.V.K.: 2011. Seasonal changes in soil temperature within mustard crop stand. J. Agrometeorol., 13, 72-74.
  • Adak T., Kumar K., and Singh A., 2012a. Spatio-temporal variations in soil moisture and soil temperature under high density guava orchard system. Proc. 5th Indian Horticulture Congr. Horticulture for Food and Environment Security, November 6-9, Ludhiana, India.
  • Adak T., Singh V.K., Singh V.K., and Singh A.K., 2012b. Regulated water deficit impacting soil moisture and soil temperature dynamics in a Dashehari mango (Mangifera indica L.) orchard of subtropical region. Proc. Global Conf. Horticulture for Food, Nutrition and livelihood Options, May 28-31, Bhubaneswar, Odisha, India.
  • Azadegan B. and Massah J., 2011. New method for soil surface darkening for increasing soil temperature. Int. Agrophys., 25, 109-113.
  • Gliñski J. and Walczak R.T., 1998.Role of agrophysics in the concept of sustainable agriculture. Int. Agrophysics, 12, 25-32.
  • Hartley I.P., Heinemeyer A., and Ineson P., 2007. Effects of three years of soil warming and shading on the rate of soil respiration: substrate availability and not thermal acclimation mediates observed response. Global Change Biol., 13, 1761-1770.
  • Heusinkveld B.G., Jacobs A.F.G., Holtslag A.A.M., and Berkowicz S.M., 2004. Surface energy balance closure in an arid region: Role of soil heat flux. Agric. For. Meteorol., 122, 21-37.
  • Holmes T.R.H., Jackson T.J., Reichle R.H., and Basara J.B., 2012. An assessment of surface soil temperature products from numerical weather prediction models using ground-based measurements. Water Resour. Res., 48, W02531.
  • Hu Q. and Feng S., 2003.Adaily soil temperature dataset and soil temperature climatology of the contiguous United States. J. Appl. Meteorol., 42, 1139-1156.
  • Jacobs C.M.J., Jacobs A.F.G., Bosveld F.C., Hendriks D.M.D., Hensen A., Kroon P., Moors E.J., Nol L., Schrier-Uijl A., and Veenendaal E.M., 2007. Variability of annual CO2 exchange from Dutch grasslands. Biogeosci., 4, 803-816.
  • Johnson-Maynard J.L., Shouse P.J., Graham R.C.,Castiglione P., and Quideay S.A., 2004. Microclimate and pedogenic inplications in a 50-year-old chaparral and pine biosequence. Soil Sci. Soc. Am. J., 68, 876-884.
  • Karhu K., Fritze H., Hämäläinen K., Vanhala P., Jungner H., OinonenM., Sonninen E., TuomiM., Spetz P., Kitunen V., and Liski J., 2010. Temperature sensitivity of soil carbon fractions in boreal forest soil. Ecology, 91, 370-376.
  • Leifeld J. and Fuhrer J., 2005. The temperature response of CO2 production from bulk soils and soil fractions is related to soil organic matter quality. Biogeochem., 75, 433-453.
  • Li S., Lü S., Ao Y., and Shang L., 2009. Annual variations in the surface radiation budget and soil water and heat content in the Upper Yellow River area. Environ. Geol., 57, 389-395.
  • Meena R.H., Giri J.D., Chaudhary S.R., and Meena B.L., 2012. Soil-site suitability for Indian mustard in Malwa plateau in Rajasthan. J. Oilseed Brassica, 3(1), 38-42.
  • Muçaj M., 2005. The main characteristics of soil temperature regime in the agriculture zone of Albania. Geophysical Res. Abstracts, 7, 01906.
  • Nabi G. and Mullins C.E., 2008. Soil temperature dependent growth of cotton seedlings before emergence. Pedosphere, 18(1), 54-59.
  • Oliveira J.C.M., Timm L.C., Tominaga T.T., C´assaro F.A.M., ReichardtK., BacchiO.O.S.,Dourado-NetoD., andCamara G.M. de S., 2001. Soil temperature in a sugarcane crop as a function of the management system. Plant Soil, 230, 61- 66.
  • Paraíba L.C., Antonio L.C., da Silva E.F., Martins J.S., and da Costa Coutinho H.L., 2003. Evaluation of soil temperature effect on herbicide leaching potential into groundwater in the Brazilian Cerrado. Chemosphere, 53(9), 1087-1095.
  • Sándor R. and Fodor N., 2012. Simulation of soil temperature dynamics with models using different concepts. The Scientific World J., 590287, 1-8.
  • Shekhawat K., Rathore S.S., Premi O.P., Kandpal B.K., and Chauhan J.S., 2012. Advances in agronomic management of Indian mustard (Brassica juncea L.): An Overview. Int. J. Agronomy, 408284, 1-14.
  • Usowicz B. and Kossowki J., 1999. Comparison of soil thermal properties in cultivated fields determined using soil water content measured by two methods. Int. Agrophysics, 13, 295-307.
  • Vanhala P., Karhu K., Tuomi M., Sonninen E., Jungner H., Fritze H., and Liski J., 2007. Old soil carbon is more temperature sensitive than young in an agricultural field. Soil Biol. Biochem., 39, 2967-2970.
  • Verma B.C., Datta S.P., Rattan R.K., and Singh A.K., 2011. Effect of temperature, moisture and different nitrogen sources on organic Cabon pools and available nutrients in an alluvial soil. J. Indian Soc. Soil Sci., 59, 286-294.
  • Wada N., Liu Q.J., and Kawada K., 2006. Seasonal variations in soil temperature on the Alpine Tundra Community in Mt. Changbai in Northeast China: Comparison with Mt. Tateyama in Central Japan. Far Eastern Studies, 5, 35-43.
  • Zhang H.F., Ge X.S., Ye H., and Jiao D.S., 2007. Heat conduction and heat storage characteristics of soils. Appl. Thermal Eng., 27, 369-373.

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-34a1e300-f0bd-4c29-a568-64d40ccf4dcf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.