PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 23 |

Tytuł artykułu

Latent viruses can cause disease by disrupting the competition for the limiting factor p300/CBP

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
CBP and p300 are histone acetyltransferase coactivators that control the transcription of numerous genes in humans, viruses, and other organisms. Although two separate genes encode CBP and p300, they share a 61% sequence identity, and they are often mentioned together as p300/CBP. Zhou et al. showed that under hypoxic conditions, HIF1α and the tumor suppressor p53 compete for binding to the limiting p300/CBP coactivator. Jethanandani & Kramer showed that δEF1 and MYOD genes compete for the limited amount of p300/CBP in the cell. Bhattacharyya et al. showed that the limiting availability of p300/CBP in the cell serves as a checkpoint for HIF1α activity. Here, we use the microcompetition model to explain how latent viruses with a specific viral cis-regulatory element in their promoter/enhancer can disrupt this competition, causing diseases such as cancer, diabetes, atherosclerosis, and obesity.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

23

Opis fizyczny

p.1-6,fig.,ref.

Twórcy

autor
  • The Center for the Biology of Chronic Disease (CBCD), 616 Corporate Way, Suite 2-3665, Valley Cottage, New York City, NY 10989, USA
autor
  • The Center for the Biology of Chronic Disease (CBCD), 616 Corporate Way, Suite 2-3665, Valley Cottage, New York City, NY 10989, USA

Bibliografia

  • 1. Rual J, Venkatesan K, Hao T, et al. Towards a proteome-scale map of the human protein–protein interaction network. Nature. 2005;437(7062):1173–8. https://doi.org/10.1038/nature04209.
  • 2. Kasper L, Fukuyama T, Biesen M, et al. Conditional knockout mice reveal distinct functions for the global transcriptional coactivators CBP and p300 in T-cell development. Mol Cell Biol. 2006;26(3):789–809. https://doi.org/10.1128/mcb.26.3. 789-809.2006.
  • 3. Kasper L, Brindle P. Mammalian gene expression program resiliency: the roles of multiple coactivator mechanisms in hypoxia–responsive transcription. Cell Cycle. 2005;5(2):142–6. https://doi.org/10.4161/cc.5.2.2353.
  • 4. Jethanandani P, Kramer R. α7 integrin expression is negatively regulated by δEF1 during skeletal Myogenesis. J Biol Chem. 2005;280(43):36037–46. https://doi.org/10.1074/jbc.m508698200.
  • 5. Zhou C, Zhang X, Liu F, Wang W. Modeling the interplay between the HIF-1 and p53 pathways in hypoxia. Sci Rep. 2015;5(1). https://doi.org/10.1038/srep13834.
  • 6. Bhattacharyya A, Chattopadhyay R, Hall E, Mebrahtu S, Ernst P, Crowe S. Mechanism of hypoxia-inducible factor 1αmediated Mcl1 regulation in helicobacter pylori-infected human gastric epithelium. Am J Physiol Gastrointest Liver Physiol. 2010;299(5):G1177–86. https://doi.org/10.1152/ajpgi.00372.2010.
  • 7. Polansky H. Microcompetition with Foreign DNA and the Origin of Chronic Disease. Rochester, NY: CBCD Publishing; 2003.
  • 8. Polansky H, Javaherian A. 3-Econsystems: MicroRNAs, receptors, and latent viruses; some insights biology can gain from economic theory. Front Microbiol. 2016;7:369. https://doi.org/10.3389/fmicb.2016.00369.
  • 9. Herpes simplex virus. World Health Organization. http://www.who.int/en/news-room/fact-sheets/detail/herpes-simplexvirus . Published 2018. Accessed August 27, 2018.
  • 10. Zuo L, Yu H, Liu L, et al. The copy number of Epstein-Barr virus latent genome correlates with the oncogenicity by the activation level of LMP1 and NF-κB. Oncotarget. 2015;6(38):41033–44.
  • 11. Polansky H, Schwab H. Copy number of latent viruses, oncogenicity, and the microcompetition model. Oncotarget. 2018;9(60). https://doi.org/10.18632/oncotarget.25804.
  • 12. Zuo L, Du S, Liu L, Lu J. The oncogenicity of Epstein-Barr virus: being “more or less” is to be concerned. Can Cell Microenviron. 2016;3:e1300. https://doi.org/10.14800/ccm.1300.
  • 13. Castelo-Branco C, Soveral I. The immune system and aging: a review. Gynecol Endocrinol. 2014;30:16–22. https://doi.org/ 10.3109/09513590.2013.852531.
  • 14. Beghi E, Shorvon S. Antiepileptic drugs and the immune system. Epilepsia. 2011;52(Suppl 3):40–4. https://doi.org/10. 1111/j.1528-1167.2011.03035.x.
  • 15. Røge R, Møller BK, Andersen CR, Correll CU, Nielsen J. Immunomodulatory effects of clozapine and their clinical implications: what have we learned so far? Schizophr Res. 2012;140:204–13. https://doi.org/10.1016/j.schres.2012.06.020.
  • 16. Decker D, Tolba R, Springer W, Lauschke H, Hirner A, von Ruecker A. Abdominal surgical interventions: local and systemic consequences for the immune system--a prospective study on elective gastrointestinal surgery. J Surg Res. 2005;126:12–8. https://doi.org/10.1016/j.jss.2005.01.006.
  • 17. Brøchner AC, Mikkelsen S, Hegelund I, Hokland M, Mogensen O, Toft P. The immune response is affected for at least three weeks after extensive surgery for ovarian cancer. Dan Med J. 2016;63.
  • 18. Angka L, Khan ST, Kilgour MK, Xu R, Kennedy MA, Auer RC. Dysfunctional natural killer cells in the aftermath of Cancer surgery. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18081787.
  • 19. Ghiringhelli F, Apetoh L. The interplay between the immune system and chemotherapy: emerging methods for optimizing therapy. Expert Rev Clin Immunol. 2014;10:19–30. https://doi.org/10.1586/1744666X.2014.865520.
  • 20. Gaipl US. Modulation of the immune system by ionizing irradiation and chemotherapeutic agents - contribution of immune activation and blocking of immune suppression to cancer therapy success. Curr Med Chem. 2012;19:1739–40.
  • 21. Vitlic A, Lord JM, Phillips AC. Stress, ageing and their influence on functional, cellular and molecular aspects of the immune system. Age (Dordr). 2014;36:9631. https://doi.org/10.1007/s11357-014-9631-6.
  • 22. Rosmarin AG, Luo M, Caprio DG, Shang J, Simkevich CP. Sp1 cooperates with the ets transcription factor, GABP, to activate the CD18 (beta2 leukocyte integrin) promoter. J Biol Chem. 1998;273:13097–103.
  • 23. Bannert R, Avots A, Baier M, Serfling E, Kurth R. GA-binding protein factors, in concert with the coactivator CREB binding protein/ p300, control the induction of the interleukin 16 promoter in T lymphocytes. Proc Natl Acad Sci U S A. 1999;96:1541–6.
  • 24. Avots A, Hoffmeyer A, Flory E, Cimanis A, Rapp UR, Serfling E. GABP factors bind to a distal interleukin 2 (IL-2) enhancer and contribute to c-Rafmediated increase in IL-2 induction. Mol Cell Biol. 1997;17:4381–9.
  • 25. Lin JX, Bhat NK, John S, Queale WS, Leonard WJ. Characterization of the human interleukin-2 receptor beta-chain gene promoter: regulation of promoter activity by ets gene products. Mol Cell Biol. 1993;13:6201–10.
  • 26. Markiewicz S, Bosselut R, Le Deist F, de Villartay JP, Hivroz C, Ghysdael J, Fischer A, de Saint Basile G. Tissue-specific activity of the gammac chain gene promoter depends upon an Ets binding site and is regulated by GA-binding protein. J Biol Chem. 1996;271:14849–55.
  • 27. Smith MF Jr, Carl VS, Lodie T, Fenton MJ. Secretory interleukin-1 receptor antagonist gene expression requires both a PU.1 and a novel composite NF-kappaB/PU.1/ GA-binding protein binding site. J Biol Chem. 1998;273:24272–9.
  • 28. Sowa Y, Shiio Y, Fujita T, Matsumoto T, Okuyama Y, Kato D, Inoue J, Sawada J, Goto M, Watanabe H, Handa H, Sakai T. Retinoblastoma binding factor 1 site in the core promoter region of the human RB gene is activated by hGABP/E4TF1. Cancer Res. 1997;57:3145–8.
  • 29. Kamura T, Handa H, Hamasaki N, Kitajima S. Characterization of the human thrombopoietin gene promoter. A possible role of an Ets transcription factor, E4TF1/GABP. J Biol Chem. 1997;272(17):11361–8.
  • 30. Wang K, Bohren KM, Gabbay KH. Characterization of the human aldose reductase gene promoter. J Biol Chem. 1993;268:16052–8.
  • 31. Nuchprayoon I, Shang J, Simkevich CP, Luo M, Rosmarin AG, Friedman AD. An enhancer located between the neutrophil elastase and proteinase 3 promoters is activated by Sp1 and an Ets factor. J Biol Chem. 1999;274:1085–91.
  • 32. Nuchprayoon I, Simkevich CP, Luo M, Friedman AD. Rosmarin AG. GABP cooperates with c-Myb and C/EBP to activate the neutrophil elastase promoter. Blood. 1997;89:4546–54.
  • 33. Sadasivan E, Cedeno MM, Rothenberg SP. Characterization of the gene encoding a folate-binding protein expressed in human placenta. Identification of promoter activity in a G-rich SP1 site linked with the tandemly repeated GGAAG motif for the ets encoded GA-binding protein. J Biol Chem. 1994;269:4725–35.
  • 34. Basu A, Park K, Atchison ML, Carter RS, Avadhani NG. Identification of a transcriptional initiator element in the cytochrome c oxidase subunit Vb promoter which binds to transcription factors NF-E1 (YY-1, delta) and Sp1. J Biol Chem. 1993;268:4188–96.
  • 35. Sucharov C, Basu A, Carter RS. Avadhani NG. A novel transcriptional initiator activity of the GABP factor binding ets sequence repeat from the murine cytochrome c oxidase Vb gene. Gene Expr. 1995;5:93–111.
  • 36. Carter RS, Avadhani NG. Cooperative binding of GA-binding protein transcription factors to duplicated transcription initiation region repeats of the cytochrome c oxidase subunit IV gene. J Biol Chem. 1994;269:4381–7.
  • 37. Carter RS, Bhat NK, Basu A, Avadhani NG. The basal promoter elements of murine cytochrome c oxidase subunit IV gene consist of tandemly duplicated ets motifs that bind to GABP-related transcription factors. J Biol Chem. 1992;267:23418–26.
  • 38. Virbasius JV, Scarpulla RC. Activation of the human mitochondrial transcription factor a gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc Natl Acad Sci U S A. 1994;91:1309–13.
  • 39. Villena JA, Vinas O, Mampel T, Iglesias R, Giralt M, Villarroya F. Regulation of mitochondrial biogenesis in brown adipose tissue: nuclear respiratory factor-2/GA-binding protein is responsible for the transcriptional regulation of the gene for the mitochondrial ATP synthase beta subunit. Biochem J. 1998;331:121–7.
  • 40. Ouyang L, Jacob KK, Stanley FM. GABP mediates insulin-increased prolactin gene transcription. J Biol Chem. 1996; 271:10425–8.
  • 41. Hoare S, Copland JA, Wood TG, Jeng YJ, Izban MG, Soloff MS. Identification of a GABP alpha/beta binding site involved in the induction of oxytocin receptor gene expression in human breast cells, potentiation by c-Fos/c-Jun. Endocrinology. 1999;140:2268–79.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-348d3385-4ce2-46db-be82-ee25e05aca1e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.