PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 3 |

Tytuł artykułu

Ecological Footprints and CO2 emissions of tomato production in Slovenia

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The intensification of vegetable production has led to economic activities that profoundly influence the ecosystem. Measuring the environmental impact of these activities is important. Tomato (Solanum lycopersicum L.) production for fresh consumption grown under greenhouse, PE tunnel, and in open fields – as well as organic production – was used for estimating ecological footprint and CO2 emissions. The reduction of food miles by introducing local production in Slovenia and the impact of alternative heating systems were considered, applying SPIonWeb software. The introduction of regional production (250 km) could reduce the ecological footprint of transport by up to 83.33% in comparison with transcontinental transport (1,500 km). Using alternative heating with geothermal energy might additionally reduce the impact of heating substantially. For the lower heating requirement of PE tunnel production, fossil fuels might be successfully replaced by pellets; thus, the footprint could be reduced by 61.88% in relation to fossil fuels.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Numer

3

Opis fizyczny

p.1233-1243,fig.,ref.

Twórcy

autor
  • Institute for Biosystem Engineering, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, SI-2311 Hoce, Slovenia
  • Institute for Resource Efficient and Sustainable Systems, Technical University Graz, Inffeldgasse 21 B, A-8010 Graz, Austria
autor
  • Institute for Biosystem Engineering, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, SI-2311 Hoce, Slovenia

Bibliografia

  • 1. CELLURA M., ARDENTE F., LONGO S., MISTRETTAM. Life Cycle Assessment (LCA) of Protected crops: an Italian case study. In: Proceedings of the 8th International Conference on Life Cycle Assessment in the Agri-food Sector, Bari, Italy, 449, 2010.
  • 2. DICKERSON G.W. Greenhouse vegetable production. New Mexico State University Extension, 556, 2011. aces.nmsu. edu/pubs/_circulars/circ556.html [Accessed 29 September 2015]
  • 3. EUROSTAT, Agricultural products (2012). www.epp.eurostat. ec.europa.eu/statistics_explained/index.php/Agricultural_ products. [Accessed 16 August 2014]
  • 4. NEMECEK T., ERZINGER S. Modelling representative life cycle inventories for Swiss arable crops. Int J Life Cycle Assess 10 (1), 1, 2005.
  • 5. MEISTERLING K., SAMARAS C., SCHWEIZER V. Decisions to reduce greenhouse gases From agriculture and product transport: LCA case. J Clean Prod 17 (2), 222, 2009.
  • 6. WIĘK A., TKAC K., Carbon Footprint: an Ecological Indicator in Food Production, Pol. J. Environ. Stud. 22 (1), 53, 2013.
  • 7. ISO 14040:2006. Environmental Management - Life Cycle Assessment - Principles and Framework, International Organization for Standardization, Geneva, 2006.
  • 8. ISO 14040:2006. Environmental Management - Life Cycle Assessment - Requirements and Guidelines, International Organization for Standardization, Geneva, 2006.
  • 9. HAGELAAR G.J.L.F, van der VORST J.G.A.J. Environmental supply chain management: using life cycle assessment to structure supply chains. Int Food Agribus Man, 4 (4), 399, 2001.
  • 10. ROMERO-GÁMEZ M., SUÁREZ-REY E.M., ANTÓN A., CASTILLA N., SORIANO T. Environmental impact of screenhouse and open-field cultivation using a life cycle analysis: the case study of green bean production. J Clean Prod, 28, 63, 2012.
  • 11. ČUČEK L., KLEMEŠ J.J., VARBANOV P.S., KRAVANJA Z. Significance of environmental footprints for evaluating sustainability and security of development. Clean Techn Ecological Environ Policy, 2015. doi: 10.1007/s10098-015-0972-3. [Accessed 28 Sept 2015]
  • 12. REES W., WACKERNAGEL M. Urban ecological footprints: Why cities cannot be sustainable-And why they are a key to sustainability. Environ Impact Asses Review 16 (4-6), 223, 1996.
  • 13. HABERL H., ERB K., KRAUSMANN F. How to calculate and interpret ecological footprints for long periods of time: the case of Austria 1926-1995. Ecol Econ 38 (1), 25, 2001.
  • 14. van der WERF H.M., TZILIVAKIS J., LEWIS K., BASSETMENS C. Environmental impacts of farm scenarios according to five assessment methods. Agr Ecosyst Environ 118 (1-4), 327, 2007.
  • 15. KROTSCHECK C., NARODOSLAWSKY M. The Sustainable Process Index - a new dimension in ecological evaluation. Ecol Eng 6, 241, 1996.
  • 16. KETTL K.H. Advanced Sustainable Process Index calculation software, Manual and software structure, Version 1.1. spionweb.tugraz.at/SPIonWeb_Stepbystep_eng.pdf [Accessed 28 September 2015]
  • 17. ARSO – Agencija Republike Slovenije za okolje. Mesečni bilten 2007, 2008. Ljubljana; 2013.gis.arso.gov.si/atlasokolja/profi le.aspx?id=Atlas_Okolja_AXL@Arso [Accessed 28 May 2015]
  • 18. PAGE G., RIDOUTT B., BELLOTTI B. Carbon and water footprint trade offs in fresh tomato production. J Clean Prod 32, 219, 2014.
  • 19. ANTÓN A., MONTERO J.I., MUÑOZ P., CASTELLS F. LCA and tomato production in Mediterranean greenhouses. IJARGE 4 (2), 102, 2005.
  • 20. MARTÍNEZ-BLANCO J., MUÑOZ P., ANTÓN A., RIERADEVALL J. Assessment of tomato mediterranean production in open-fi eld and multi-tunnel greenhouse, with compost or mineral fertilizers, from an environmental standpoint. J Clean Prod 19 (9-10), 985, 2011

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-348ab160-03eb-49a5-aae4-304817030d5f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.