PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2012 | 71 | 2 |

Tytuł artykułu

Morphometry of the coronary artery and heart microcirculation in infants

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Knowledge of morphometric quantities of coronary arteries in infants is an increasingly vital component in managing congenital and acquired heart disease. Because of considerable heterogeneity of coronary vasculature, what is considered atypical and aberrant or insignificant anatomy is often unclear. The purpose of our present study is to define normal infant anatomy. This was done by focusing on the segment analysis of coronary arteries in infants. Segment analysis was used to define an accurate definition of the length and diameter of the coronary network. The lengths, widths, and numbers of collateral branches of the coronary arteries were measured. The coronary vessels of 40 infant hearts were visualised postmortem by injection of the coronary arteries with X-ray opaque dye for the imaging study. Also, black ink cast and silver impregnation specimens were studied. The longest segment of the circumflex branches of left coronary arteries was the second; the lengths were 9066.6 ± 1828 µm. The length of I, III, and IV were 7366 ± 378.7 µm, 7536.6 ± 1533.8 µm, 4476.6 ± 690.9 µm, respectively. The lengths of the circumflex branch of the coronary artery were longer than that of the others; it is joined with the anterior interventricular branch of the coronary artery in the dorsal wall of the left ventricle. Rates of branching and ramification were low, and the number of lateral branches was low. (Folia Morphol 2012; 71, 2: 93–99)

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

71

Numer

2

Opis fizyczny

p.93-99,fig.,ref.

Twórcy

autor
  • Department of Anatomy, Health Sciences, University of Mongolia, Ulaanbaatar, Street of Choidog, 976 Ulaanbaatar, Mongolia
autor
  • Department of Anatomy, Health Sciences, University of Mongolia, Ulaanbaatar, Street of Choidog, 976 Ulaanbaatar, Mongolia
  • Department of Anatomy, Health Sciences, University of Mongolia, Ulaanbaatar, Street of Choidog, 976 Ulaanbaatar, Mongolia
autor
  • Department of Anatomy, Health Sciences, University of Mongolia, Ulaanbaatar, Street of Choidog, 976 Ulaanbaatar, Mongolia
autor
  • Department of Anatomy, Health Sciences, University of Mongolia, Ulaanbaatar, Street of Choidog, 976 Ulaanbaatar, Mongolia
  • Department of Anatomy, Health Sciences, University of Mongolia, Ulaanbaatar, Street of Choidog, 976 Ulaanbaatar, Mongolia

Bibliografia

  • 1. Aharinejad S, Lametschwandtner A. Microvascular (1991) Casting in scanning electron microscopy. Techniques and applications. Springer, New York.
  • 2. Aharinejad S, MacDonald IC, MacKay CE, Mason-Savas A (1993) New aspects of microvascular casting, A scanning, transmission electron, and high-resolution intravital video microscopic study. Microsc Res Tech, 26: 473–488.
  • 3. Aharinejad S, MacDonald IC, Schmidt EE, Bock P, Hagen D, Groom AC (1993) Scanning and transmission electron microscopy and high resolution intra-vital video-microscopy of capillaries in the mouse exocrine pancreas, with special emphasis on endothelial cells. Anat Rec, 2: 163–177.
  • 4. Aharinejad S, Schraufnagel DE, Miksovsky A, Larson EDK, Marks SC Jr. (1995) Endothelin-1 focally constricts pulmonary veins. J Thorac Cardiovasc Surg, 11: 148–156.
  • 5. Aharinejad S, Schraufnagel DE, Bock P, MacKay CA, Larson EK, Miksovsky A, Marks SC Jr. (1996) Spontaneous hypertensive rats develop pulmonary hypertension associated with hypertrophied pulmonary venous sphincters. Am J Pathol, 45: 281–290.
  • 6. Aharinejad S, Schreiner W, Neumann F (1998) Morphometry of human coronary arterial trees. Anat Res, 251: 50–59.
  • 7. Andrew N (2006) Coronary artery anomalies. Am J Physiol Heart Circ Physiol, 287: 1014–1042.
  • 8. Avirmed A, Amgalanbaatar D (2007) Morphological aspects of the coronary artery in neonates. Folia Morphol, 66: 332–338.
  • 9. Bassingthwaighte JB, Malone MA, Moffett TC, King RB, Little SE, Link JM, Krohn KA (1987) Validity of microsphere depositions for regional myocardial flows. Am J Physiol, 253: 184–193.
  • 10. Bertuglia S, Colantuoni A, Intaglietta M. (1994) Effects of L-NMMA and indomethacin on arteriolar vasomotion in skeletal muscle microcirculation of conscious and anesthetized hamsters. Microvasc Res, 12: 68–84.
  • 11. Changizi MA, Cherniak C (2000) Modeling the large — scale geometry of human. Can J Physiol Pharmacol, 78: 603–611.
  • 12. Coma-Canella I, Maceiva A, Diaz Dorronsoro Galabuig J, Martinez A (1999) Changes in the diameter of the coronary arteries in heart transplant recipients with angiographically normal vessels during five years. Esp Cardiol, 52: 485–492.
  • 13. Frobert O, Gregerson H, Bjerre J, Bagger TP, Kassab GS (1998) Relation between zero — stress state and branching order of porcine left coronary arterial tree. Ann J Physiol, 275 (6 Part 2): 42283–90.
  • 14. Gustafsson H, Mulvany J, Nilsson H (1993) Rhythmic contractions of isolated small arteries: Influence of the endothelium. Acta Physiol Scand, 148: 153–163.
  • 15. Kaimovitz B, Lanir Y, Kassab Gs (2005) Large scale 3D geometric reconstruction of the porcine coronary arterial vasculature based on detailed anatomical data. Ann Biomed Eng, 33: 1517–1535.
  • 16. Kalsho G, Kassab Gs (2004) Bifurcation asymmetry of the porcine coronary vasculature and its implications on coronary flow heterogeneity. Am J Physiol Heart Circ Physiol, 287: 42493–42500.
  • 17. Kassab GS, Rider CA, Tang NJ, Fung YCB (1993) Morphometry of pig coronary arterial trees. Am J Physiol, 265: 350–365.
  • 18. Kassab GS (2000) The coronary vasculature and its reconstruction. Ann Biomed Eng Ang, 28: 903–915.
  • 19. Kassab GS, Lin DH, Fung YC (1994) Morphometry of coronary venous system. Am J Physiol, 267 (6 Part 2): 42100–42113.
  • 20. Kassab GS, Rider CA, Jang NJ, Fung YC (1997) Morphometry of pig coronary arterial trees. Am J Physiol, 265 (1 Part 2): 4350–4365.
  • 21. Kassab GS, Fung YC (1994) Topology and dimensions of pig coronary capillary network. Am J Physiol, 267 (1 Part 2): M319–M325.
  • 22. Kassab GS, Pallencave E, Schatz A, Fung YC (1997) Longitudinal position matrix of the pig coronary vasculature and its hemodynamic implications. Am J Physiol, 273 (6 Part 2): 42832–42842.
  • 23. Karch R, Neumann F, Neumann M, Schreiner W (2000) Staged growth of optimized arteriole model trees. Ann Biomed Eng, 28: 495–411.
  • 24. Less JR, Skalak TC, Sevick EM, Jain RK (1991) Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions. Cancer Res, 51: 265–273.
  • 25. Mittal N, Zhou Y, Ungs S, Linares C, Molloi S, Kassab GS (2005) A computer reconstruction of the entire coronary arterial tree based on detailed morphometric data Ann Biomed Eng, 33: 1015–1026.
  • 26. Morioka CA, Abbey Ck, Eckstein M, Close Whiting JS, Lefee M (2000) Simulating coronary arteries in X-ray angiograms. Med Phys, 27: 2438–2444.
  • 27. Smith NP, Pullan AJ, Hunter PJ (2000) Generation of an anatomically based geometric coronary model. Ann Biomed Eng, 28: 14–25.
  • 28. Sonka M, Reddy GK, Winniford MD, Collins SM (1997) Adaptive approach to accurate analysis of small diameter vessel in cineangiograms. IET Rans Med Imaging, 16: 87–95.
  • 29. Tsutsui H, Schoenhagen P, Crowe TP, Klingensmith JD. Vince DG, Nissen SE, Tuzeu EM (2003) Influence of coronary pulsation on volumetric intravascular ultrasound measurements performed without ECG gating validation in vessel segments with minimal disease. Int J Cardiovascular Imaging, 19: 51–57.
  • 30. VanBavel E, Spaan JA (1992) Branching patterns in the porcine coronary arterial tree. Estimation of the flow heterogeneity. Circ Res, 71: 1200–1212.
  • 31. Wang JZ, Jie B, Welkowitz W, Kostis J, Summlow B (1989) Incremental network analogue model of the coronary artery. Med Biol Eng Comput, 27: 416–422.
  • 32. Weber OM, Martin AJ, Higgins CB (2003) Whole-heart steady-state free precession coronary artery magnetic resonance angiography. Magn Reson Med, 50: 1223–1228.
  • 33. Zamir M, Phipp S (1988) Network analysis of an arterial tree. I Bio Mechm, 21: 25–34.
  • 34. Zamir M, Sinclair P (1988) Roots and calibers of the human coronary arteries. Am J. Anat, 183: 226–234.
  • 35. Zamir M, Phipps S, Langille BL, Wonnacott TH (1984) Branching characteristics of coronary arteries. Can J Psysiol Pharmacol, 62: 1453–1459.
  • 36. Zamir M (1996) Tree structure and branching characteristics of the right coronary artery in a right dominant human heart. Can J Cardiol, 12: 593–599.
  • 37. Zamir M (1988) Distributing and delivering vessels of the human heart. J Cen Physiol, 91: 725–735.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3484a368-2f12-48b6-9ba5-de97f6719a95
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.