PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 23 | 5 |

Tytuł artykułu

Mineralogical, chemical, and leaching characteristics of coal combustion bottom ash from a power plant located in Northern Poland

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The present research is focused on chemical and mineralogical characterization of bottom ashes produced during coal combustion in a power plant operating in northern Poland. On the basis of these results we estimate a potential environmental hazard and try to find a possible application for studied materials. Bulk chemical composition of all studied bottom ash samples is homogenous and SiO2 and Al2O3 are the major components of samples and together with Fe2O3 represent more than 70 wt. %. All ashes were thus classified as type F ashes. CaO and SO3 concentrations are relatively low and reach up to 3.1 and 0.32 wt. %, respectively. The total concentrations of trace elements in the studied bottom ash samples are generally lower than those reported for the coal from different countries. The highest concentration of trace elements was noted for Co and Pb (up to 84 and 76 mg·kg-1, respectively), and the lowest for Hg and Se (up to 0.2 and 2 mg·kg-1). Studied samples of bottom ash are mostly composed of mullite and quartz with some minor amounts of hematite and traces of calcite. Two types of leaching experiments (using distilled water and 0.05 mol/L of EDTA solution) show that the mobility of select inorganic pollutants (Co, Cu, As, Ni, Zn, and Pb) is relatively low and together with the results of total element concentration in bottom ash indicate that the potential risk associated with the release of trace elements from studied wastes is negligible. Therefore, studied wastes could be successfully used as a secondary raw material.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

23

Numer

5

Opis fizyczny

p.1627-1635,fig.,ref.

Twórcy

autor
  • Institute of Geological Sciences, University of Wroclaw, Cybulskiego 30, 50‐205 Wroclaw, Poland
autor
  • KGHM Cuprum Ltd. Research and Development Center, Gen.Sikorskiego 2-8, 53-659 Wroclaw, Poland

Bibliografia

  • 1. ALVAREZ-AYUSO E., QUEROL X., TOMAS A. Environmental impact of a coal combustion-desulphurisa- tion plant: abatement capacity of desulphurization process and environmental characterisation of combustion by-prod­ucts. Chemosphere 65, 2009, 2006.
  • 2. ITSKOS G, ITSKOS S, KOUKOUZAS N. Size fraction characterization of highly calcareous fly ash. Fuel Process. Technol. 91, 1558, 2010.
  • 3. GOLEWSKI G.L., SADOWSKI T. An analysis of shear fracture toughness KIIc and microstructure in concretes containing fly-ash. Constr. Build. Mater. 51, 207, 2014.
  • 4. RYU G.S., LEE Y.B., KOH K.T. CHUNG Y.S. The mechanical properties of fly ash-based geopolymer con­crete with alkaline activators. Constr. Build. Mater. 41, 409, 2013.
  • 5. DESCHNER F., WINNEFELD F., LOTHENBACH B., SEUFERT S., SCHWESIG P., DITTRICH S., GOETZ- NEUNHOEFFER F., NEUBAUER J. Hydration of Portland cement with high replacement by siliceous fly ash. Cement Concrete Res. 42, 1389, 2012.
  • 6. FRANUS W. Characterization of X-type zeolite prepared from coal fly ash. Pol. J. Environ. Stud. 21, 337, 2012.
  • 7. CHAŁUPNIK S., FRANUS W., WYSOCKA M., GZYL G. Application of zeolites for radium removal from mine water. Environ. Sci. Pollut. Res. 20, 7900, 2013.
  • 8. BASU M., PANDE M., BHADORIA P.B.S., MAHAPA- TRA S.C. Potential fly-ash utilization in agriculture: A glob­al review. Prog. Nat. Sci. 19, 1173, 2009.
  • 9. YUNUSA I.A.M., LOGANATHAN P., NISSANKA S.P., MANOHARAN V., BURCHETT M.D., SKILBECK C.G., EAMUS D. Application of Coal Fly Ash in Agriculture: A Strategic Perspective. Crit. Rev. Environ. Sci. Technol. 42, 559, 2012.
  • 10. GRUSZECKA A.M, WDOWIN M. Characteristics and distribution of analyzed metals in vertical soil profiles in the vicinity of a post flotation waste site in the Bukowno region, Poland. Environ. Monit. Assess. 185, 8157, 2013.
  • 11. WDOWIN M., GRUSZECKA A. Mineralogical-chemical and textural characteristics of Zn-Pb industry flotation wastes with further potential for application as sorbents.. Miner. Res. Manage. 28, 55, 2012 [In Polish].
  • 12. BABA A. Geochemical assessment of environmental effects of ash from Yatagan (Mugla-Turkey) thermal power plant, Water Air Soil Poll. 144, 3, 2003.
  • 13. DEMIR I., HUGHES R.H., DEMARIS P.J. Formation and use of coal combustion residues from three types of power plants burning Illinois coals. Fuel 80, 1659, 2001.
  • 14. QUEROL X., UMANA J.C., ALASTUEY A., AYORA C., LOPEZ-SOLER A., PLANA F. Extraction of soluble major and trace elements from fly ash in open and closed leaching systems. Fuel 80, 801, 2001.
  • 15. WANG T., WANG J., TANG Y., SHI H., LADWIG K. Leaching characteristics of arsenic and selenium from coal fly ash: role of calcium. Energ. Fuel. 23, 2959, 2009.
  • 16. BABA A., GURDAL G., SENGUNALP F. Leaching char­acteristics of fly ash from fluidized bed combustion thermal power plant: case study: Can (ęanakkale-Turkey). Fuel Process. Technol. 91, 1073, 2010.
  • 17. ETTLER V., SEBEK O., GRYGAR T., KLEMENTOVA M., BEZDICKA P., SLAVtKOVA H. Controls on metal leaching from secondary Pb smelter air-pollution-control residues. Environ. Sci. Technol. 42, 7878, 2008.
  • 18. KIERCZAK J., POTYSZ A., PIETRANIK A., TYSZKA R., MODELSKA M., NEEL C., ETTLER V., MIHALJEVIC M. Environmental impact of the historical Cu smelting in the Rudawy Janowickie Mountains (south-western Poland). J. Geochem. Explor. 124, 183, 2013.
  • 19. SMOLKA-DANIELOWSKA D. Rare earth elements in fly ashes created during the coal burning process in certain coal-fired power plants operating in Poland - Upper Silesian Industrial Region. J. Environ. Radioactiv. 101, 965, 2010.
  • 20. VITKOVA M., HYKS J., ETTLER V., ASTRUP T. Stability and leaching of cobalt smelter fly ash. Appl. Geochem. 29, 117, 2013.
  • 21. TANG Q., LIU G., YAN Z., SUN R. Distribution and fate of environmentally sensitive elements (arsenic, mercury, stibi­um and selenium) in coal-fired power plants at Huainan, Anhui, China. Fuel 95, 334, 2012.
  • 22. GERMANI M.S., ZOLLER W.H. Vapor-phase concentra­tions of arsenic, selenium, bromine, iodine, and mercury in the stack of a coal-fired power-plant. Environ. Sci. Technol. 22, (9), 1079, 1988.
  • 23. QUEVAUVILLER P. Operationally defined extraction pro­cedures for soil and sediment analysis I. Standardization. Trends Anal. Chem. 17, 289, 1998.
  • 24. JUDA-REZLER K., KOWALCZYK D. Size distribution and trace elements contents of coal fly Ash from pulverized boilers. Pol. J. Environ. Stud. 22, (1), 25, 2013.
  • 25. JAK E., DEGTEROV S., HAYES P.C., PELTON A.D. Thermodynamic modeling of the system Al2O3-SiO2-CaO- FeO-Fe2O3 to predict the flux requirements for coal ash slags. Fuel 77, 77, 1998.
  • 26. MITCHELL R.S., GLUSKOTER H.J. Mineralogy of ash of some American coals: variations with temperature and source. Fuel 55, 9, 1976.
  • 27. HATT R.M., BULL D.L. Mineral matter and ash deposition from coal. In: Bryers R.W., Vorres K.S., Editors. New York: Engineering Foundation, pp. 215, 1990.
  • 28. NORDSTROM D.K. Worldwide occurrences of arsenic in ground water. Science 296, 2143, 2002.
  • 29. LUND L.J., SPOSITO G., PAGE A.L. Project Summary- Determination and prediction of chemical forms of trace metals in sewage sludge and sludge-amended soils. EPA/600/52-85/053, U.S. Environmental Protection Agency, Water Engineering Research Laboratory 1985.
  • 30. ALLOWAY B.J. Heavy Metals in Soils. Blackie Academic & Professional: Glasgow, 1990.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3483a11b-701d-45c9-bbf9-b3c3de4ac9b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.