PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 19 | 1 |

Tytuł artykułu

Spectrin and phospholipids - the current picture of their fascinating interplay

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The spectrin-based membrane skeleton is crucial for the mechanical stability and resilience of erythrocytes. It mainly contributes to membrane integrity, protein organization and trafficking. Two transmembrane protein macro-complexes that are linked together by spectrin tetramers play a crucial role in attaching the membrane skeleton to the cell membrane, but they are not exclusive. Considerable experimental data have shown that direct interactions between spectrin and membrane lipids are important for cell membrane cohesion. Spectrin is a multidomain, multifunctional protein with several distinctive structural regions, including lipid-binding sites within CH tandem domains, a PH domain, and triple helical segments, which are excellent examples of ligand specificity hidden in a regular repetitive structure, as recently shown for the ankyrin-sensitive lipid-binding domain of beta spectrin. In this review, we summarize the state of knowledge about interactions between spectrin and membrane lipids.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

19

Numer

1

Opis fizyczny

p.158-179,fig.,ref.

Twórcy

  • University of Zielona Gora, Faculty of Biological Sciences, Poland
autor
  • University of Zielona Gora, Faculty of Biological Sciences, Poland
  • University of Wroclaw, Faculty of Biotechnology, Laboratory of Cytobiochemistry, F.Joliot-Curie 14A, 50-383 Wroclaw
autor
  • University of Wroclaw, Faculty of Biotechnology, Laboratory of Cytobiochemistry, F.Joliot-Curie 14A, 50-383 Wroclaw
  • Paul Langerhans Institute Dresden, Faculty of Medicine Carl Gustav Carus at the TU Dresden, Germany

Bibliografia

  • 1. Marchesi, V.T. and Steers, E., Jr. Selective solubilization of a protein component of the red cell membrane. Science 159 (1968) 203–204.
  • 2. Sahr, K.E., Laurila, P., Kotula, L., Scarpa, A.L., Coupal, E., Leto, T.L., Linnenbach, A.J., Winkelmann, J.C., Speicher, D.W., Marchesi, V.T , Curtis, P.J. and Forget, B.G. The complete cDNA and polypeptide sequences of human erythroid alpha-spectrin. J. Biol. Chem. 265 (1990) 4434–4443.
  • 3. Winkelmann, J.C., Chang, J.G., Tse, W.T., Scarpa, A.L., Marchesi, V.T. and Forget, B.G. Full-length sequence of the cDNA for human erythroid beta-spectrin. J. Biol. Chem. 265 (1990) 11827–11832.
  • 4. Sevinc, A., Witek, M.A. and Fung, L.W. Yeast two-hybrid and itc studies of alpha and beta spectrin interaction at the tetramerization site. Cell. Mol. Biol. Lett. 16 (2011) 452–461.
  • 5. Speicher, D.W. and Marchesi, V.T. Erythrocyte spectrin is comprised of many homologous triple helical segments. Nature 311 (1984) 177–180.
  • 6. Sevinc, A. and Fung, L.W. Non-erythroid beta spectrin interacting proteins and their effects on spectrin tetramerization. Cell. Mol. Biol. Lett. 16 (2011) 595–609.
  • 7. Byers, T.J. and Branton, D. Visualization of the protein associations in the erythrocyte membrane skeleton. Proc. Natl. Acad. Sci. U S A 82 (1985) 6153–6157.
  • 8. Liu, S.C., Derick, L.H. and Palek, J. Visualization of the hexagonal lattice in the erythrocyte membrane skeleton. J. Cell Biol. 104 (1987) 527–536.
  • 9. Swihart, A.H., Mikrut, J.M., Ketterson, J.B. and Macdonald, R.C. Atomic force microscopy of the erythrocyte membrane skeleton. J. Microsc. 204 (2001) 212–225.
  • 10. Nans, A., Mohandas, N. and Stokes, D.L. Native ultrastructure of the red cell cytoskeleton by cryo-electron tomography. Biophys. J. 101 (2011) 2341–2350.
  • 11. Ursitti, J.A., Kotula, L., DeSilva, T.M., Curtis, P.J. and Speicher, D.W. Mapping the human erythrocyte beta-spectrin dimer initiation site using recombinant peptides and correlation of its phasing with the alpha-actinin dimer site. J. Biol. Chem. 271 (1996) 6636–6644.
  • 12. Morrow, J.S. and Marchesi, V.T. Self-assembly of spectrin oligomers in vitro: a basis for a dynamic cytoskeleton. J. Cell Biol. 88 (1981) 463–468.
  • 13. Machnicka, B., Czogalla, A., Hryniewicz-Jankowska, A., Boguslawska, D.M., Grochowalska, R., Heger, E. and Sikorski, A.F. Spectrins: A structural platform for stabilization and activation of membrane channels, receptors and transporters. Biochim. Biophys. Acta 1838 (2014) 620–634.
  • 14. De Matteis, M.A. and Morrow, J.S. Spectrin tethers and mesh in the biosynthetic pathway. J. Cell Sci. 113 (2000) 2331–2343.
  • 15. Machnicka, B., Grochowalska, R., Boguslawska, D.M., Sikorski, A.F. and Lecomte, M.C. Spectrin-based skeleton as an actor in cell signaling. Cell. Mol. Life Sci. 69 (2012) 191–201.
  • 16. Yan, Y., Winograd, E., Viel, A., Cronin, T., Harrison, S.C. and Branton, D. Crystal structure of the repetitive segments of spectrin. Science 262 (1993) 2027–2030.
  • 17. Kotula, L., DeSilva, T.M., Speicher, D.W. and Curtis, P.J. Functional characterization of recombinant human red cell alpha-spectrin polypeptides containing the tetramer binding site. J. Biol. Chem. 268 (1993) 14788–14793.
  • 18. Wasenius, V.M., Saraste, M., Salven, P., Eramaa, M., Holm, L. and Lehto, V.P. Primary structure of the brain alpha-spectrin. J. Cell Biol. 108 (1989) 79–93.
  • 19. Pawson, T. Protein modules and signalling networks. Nature 373 (1995) 573–580.
  • 20. Musacchio, A., Noble, M., Pauptit, R., Wierenga, R. and Saraste, M. Crystal structure of a Src-homology 3 (SH3) domain. Nature 359 (1992) 851–855.
  • 21. Rotter, B., Kroviarski, Y., Nicolas, G., Dhermy, D. and Lecomte, M.C. AlphaII-spectrin is an in vitro target for caspase-2, and its cleavage is regulated by calmodulin binding. Biochem. J. 378 (2004) 161–168.
  • 22. Glantz, S.B., Cianci, C.D., Iyer, R., Pradhan, D., Wang, K.K. and Morrow, J.S. Sequential degradation of alphaII and betaII spectrin by calpain in glutamate or maitotoxin-stimulated cells. Biochemistry 46 (2007) 502–513.
  • 23. Harris, A.S., Croall, D.E. and Morrow, J.S. The calmodulin-binding site in alpha-fodrin is near the calcium-dependent protease-I cleavage site. J. Biol. Chem. 263 (1988) 15754–15761.
  • 24. Harris, A.S. and Morrow, J.S. Proteolytic processing of human brain alpha spectrin (fodrin): identification of a hypersensitive site. J. Neurosci. 8 (1988) 2640–2651.
  • 25. Harris, A.S. and Morrow, J.S. Calmodulin and calcium-dependent protease I coordinately regulate the interaction of fodrin with actin. Proc. Natl. Acad. Sci. USA 87 (1990) 3009–3013.
  • 26. Nicolas, G., Fournier, C.M., Galand, C., Malbert-Colas, L., Bournier, O., Kroviarski, Y., Bourgeois, M., Camonis, J.H., Dhermy, D., Grandchamp, B. and Lecomte M.C. Tyrosine phosphorylation regulates alpha II spectrin cleavage by calpain. Mol. Cell. Biol. 22 (2002) 3527–3536.
  • 27. Nedrelow, J.H., Cianci, C.D. and Morrow, J.S. c-Src binds alpha II spectrin's Src homology 3 (SH3) domain and blocks calpain susceptibility by phosphorylating Tyr1176. J. Biol. Chem. 278 (2003) 7735–7741.
  • 28. Buevich, A.V., Lundberg, S., Sethson, I., Edlund, U. and Backman, L. NMR studies of calcium-binding to mutant alpha-spectrin EF-hands. Cell. Mol. Biol. Lett. 9 (2004) 167–186.
  • 29. Feng, Y.D., Li, J., Zhou, W.C., Jia, Z.G. and Wei, Q. Identification of the critical structural determinants of the EF-hand domain arrangements in calcium binding proteins. Biochim. Biophys. Acta 1824 (2012) 608–619.
  • 30. Lundberg, S., Buevich, A.V., Sethson, I., Edlund, U. and Backman, L. Calcium-binding mechanism of human non-erythroid alpha-spectrin EFstructures. Biochemistry 36 (1997) 7199–7208.
  • 31. Trave, G., Lacombe, P.J., Pfuhl, M., Saraste, M. and Pastore, A. Molecular mechanism of the calcium-induced conformational change in the spectrin EF-hands. EMBO J. 14 (1995) 4922–4931.
  • 32. Nestor, M.W., Cai, X., Stone, M.R., Bloch, R.J. and Thompson, S.M. The actin-binding domain of betaI-spectrin regulates the morphological and functional dynamics of dendritic spines. PLoS One 6 (2011) e16197.
  • 33. Karinch, A.M., Zimmer, W.E. and Goodman, S.R. The identification and sequence of the actin-binding domain of human red blood cell beta-spectrin. J. Biol. Chem. 265 (1990) 11833–11840.
  • 34. Macias, M.J., Musacchio, A., Ponstingl, H., Nilges, M., Saraste, M. and Oschkinat, H. Structure of the pleckstrin homology domain from betaspectrin. Nature 369 (1994) 675–677.
  • 35. Zhang, P., Talluri, S., Deng, H., Branton, D. and Wagner, G. Solution structure of the pleckstrin homology domain of Drosophila beta-spectrin. Structure 3 (1995) 1185–1195.
  • 36. Zhang, P., Sridharan, D. and Lambert, M.W. Knockdown of mu-calpain in Fanconi anemia, FA-A, cells by siRNA restores alphaII spectrin levels and corrects chromosomal instability and defective DNA interstrand cross-link repair. Biochemistry 49 (2010) 5570–5581.
  • 37. Bennett, V. and Stenbuck, P.J. Identification and partial purification of ankyrin, the high affinity membrane attachment site for human erythrocyte spectrin. J. Biol. Chem. 254 (1979) 2533–2541.
  • 38. Bennett, V. and Healy, J. Organizing the fluid membrane bilayer: diseases linked to spectrin and ankyrin. Trends Mol. Med. 14 (2008) 28–36.
  • 39. Luna, E.J., Kidd, G.H. and Branton, D. Identification by peptide analysis of the spectrin-binding protein in human erythrocytes. J. Biol. Chem. 254 (1979) 2526–2532.
  • 40. Yu, J. and Goodman, S.R. Syndeins: the spectrin-binding protein(s) of the human erythrocyte membrane. Proc. Natl. Acad. Sci. USA 76 (1979) 2340–2344.
  • 41. Ipsaro, J.J., Harper, S.L., Messick, T.E., Marmorstein, R., Mondragon, A. and Speicher, D.W. Crystal structure and functional interpretation of the erythrocyte spectrin tetramerization domain complex. Blood 115 (2010) 4843–4852.
  • 42. La-Borde, P.J., Stabach, P.R., Simonovic, I., Morrow, J.S. and Simonovic, M. Ankyrin recognizes both surface character and shape of the 14–15 di-repeat of beta-spectrin. Biochem. Biophys. Res. Commun. 392 (2010) 490–494.
  • 43. Kolondra, A., Grzybek, M., Chorzalska, A. and Sikorski, A.F. The 22.5 kDa spectrin-binding domain of ankyrinR binds spectrin with high affinity and changes the spectrin distribution in cells in vivo. Protein Expr. Purif. 60 (2008) 157–164.
  • 44. Lu, P.W., Soong, C.J. and Tao, M. Phosphorylation of ankyrin decreases its affinity for spectrin tetramer. J. Biol. Chem. 260 (1985) 14958–14964.
  • 45. Kolondra, A., Lenoir, M., Wolny, M., Czogalla, A., Overduin, M., Sikorski, A.F. and Grzybek, M. The role of hydrophobic interactions in ankyrin-spectrin complex formation. Biochim. Biophys. Acta 1798 (2010) 2084–2089.
  • 46. Yasunaga, M., Ipsaro, J.J. and Mondragon, A. Structurally similar but functionally diverse ZU5 domains in human erythrocyte ankyrin. J. Mol. Biol. 417 (2012) 336–350.
  • 47. Czogalla, A. and Sikorski, A.F. Do we already know how spectrin attracts ankyrin? Cell. Mol. Life Sci. 67 (2010) 2679–2683.
  • 48. Bennett, V. and Baines, A.J. Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol. Rev. 81 (2001) 1353–1392.
  • 49. Stefanovic, M., Markham, N.O., Parry, E.M., Garrett-Beal, L.J., Cline, A.P., Gallagher, P.G., Low, P.S. and Bodine, D.M. An 11-amino acid betahairpin loop in the cytoplasmic domain of band 3 is responsible for ankyrin binding in mouse erythrocytes. Proc. Natl. Acad. Sci. USA 104 (2007) 13972–13977.
  • 50. Kim, S., Brandon, S., Zhou, Z., Cobb, C.E., Edwards, S.J., Moth, C.W., Parry, C.S., Smith, J.A., Lybrand, T.P., Hustedt, E.J. and Beth, A.H. Determination of structural models of the complex between the cytoplasmic domain of erythrocyte band 3 and ankyrin-R repeats 13–24. J. Biol. Chem. 286 (2011) 20746–20757.
  • 51. Nicolas, V., Le Van Kim, C., Gane, P., Birkenmeier, C., Cartron, J.P., Colin, Y. and Mouro-Chanteloup, I. Rh-RhAG/ankyrin-R, a new interaction site between the membrane bilayer and the red cell skeleton, is impaired by Rh(null)-associated mutation. J. Biol. Chem. 278 (2003) 25526–25533.
  • 52. Bruce, L.J., Beckmann, R., Ribeiro, M.L., Peters, L.L., Chasis, J.A., Delaunay, J., Mohandas, N., Anstee, D.J. and Tanner, M.J. A band 3-based macrocomplex of integral and peripheral proteins in the RBC membrane. Blood 101 (2003) 4180–4188.
  • 53. Franco, T. and Low, P.S. Erythrocyte adducin: a structural regulator of the red blood cell membrane. Transfus. Clin. Biol. 17 (2010) 87–94.
  • 54. Gauthier, E., Guo, X., Mohandas, N. and An, X. Phosphorylationdependent perturbations of the 4.1R-associated multiprotein complex of the erythrocyte membrane. Biochemistry 50 (2011) 4561–4567.
  • 55. Khan, A.A., Hanada, T., Mohseni, M., Jeong, J.J., Zeng, L., Gaetani, M., Li, D., Reed, B.C., Speicher, D.W. and Chishti, A.H. Dematin and adducin provide a novel link between the spectrin cytoskeleton and human erythrocyte membrane by directly interacting with glucose transporter-1. J. Biol. Chem. 283 (2008) 14600–14609.
  • 56. Salomao, M., Zhang, X., Yang, Y., Lee, S., Hartwig, J.H., Chasis, J.A., Mohandas, N. and An, X. Protein 4.1R-dependent multiprotein complex: new insights into the structural organization of the red blood cell membrane. Proc. Natl. Acad. Sci. U S A 105 (2008) 8026–8031.
  • 57. Nunomura, W., Takakuwa, Y., Parra, M., Conboy, J. and Mohandas, N. Regulation of protein 4.1R, p55, and glycophorin C ternary complex in human erythrocyte membrane. J. Biol. Chem. 275 (2000) 24540–24546.
  • 58. Chishti, A.H., Kim, A.C., Marfatia, S.M., Lutchman, M., Hanspal, M., Jindal, H., Liu, S.C., Low, P.S., Rouleau, G.A., Mohandas, N., Chasis, J.A., Conboy, J.G., Gascard, P., Takakuwa, Y., Huang, S.C., Benz, E.J. Jr, Bretscher, A., Fehon, R.G., Gusella, J.F., Ramesh, V., Solomon, F., Marchesi, V.T., Tsukita, S., Tsukita, S., Arpin, M., Louvard, D., Tonks, N.K., Anderson, J.M., Fanning, A.S., Bryant, P.J., Woods, D.F. and Hoover K.B. The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends Biochem. Sci. 23 (1998) 281–282.
  • 59. Diakowski, W., Grzybek, M. and Sikorski, A.F. Protein 4.1, a component of the erythrocyte membrane skeleton and its related homologue proteins forming the protein 4.1/FERM superfamily. Folia Histochem. Cytobiol. 44 (2006) 231–248.
  • 60. Koshino, I., Mohandas, N. and Takakuwa, Y. Identification of a novel role for dematin in regulating red cell membrane function by modulating spectrin–actin interaction. J. Biol. Chem. 287 (2012) 35244–35250.
  • 61. Korsgren, C., Peters, L.L. and Lux, S.E. Protein 4.2 binds to the carboxylterminal EF-hands of erythroid alpha-spectrin in a calcium- and calmodulin-dependent manner. J. Biol. Chem. 285 (2010) 4757–4770.
  • 62. Delaunay, J. The molecular basis of hereditary red cell membrane disorders. Blood Rev. 21 (2007) 1–20.
  • 63. Boguslawska, D.M., Heger, E. and Sikorski, A.F. [Molecular mechanism of hereditary spherocytosis]. Pol. Merkur. Lekarski 20 (2006) 112–116.
  • 64. Barcellini, W., Bianchi, P., Fermo, E., Imperiali, F.G., Marcello, A.P., Vercellati, C., Zaninoni, A. and Zanella, A. Hereditary red cell membrane defects: diagnostic and clinical aspects. Blood Transfus. 9 (2011) 274–277.
  • 65. An, X. and Mohandas, N. Disorders of red cell membrane. Br. J. Haematol. 141 (2008) 367–375.
  • 66. Mombers, C., de Gier, J., Demel, R.A. and van Deenen, L.L. Spectrin– phospholipid interaction. A monolayer study. Biochim. Biophys. Acta 603 (1980) 52–62.
  • 67. Haest, C.W. Interactions between membrane skeleton proteins and the intrinsic domain of the erythrocyte membrane. Biochim. Biophys. Acta 694 (1982) 331–352.
  • 68. Sikorski, A.F., Hanus-Lorenz, B., Jezierski, A. and Dluzewski, A.R. Interaction of membrane skeletal proteins with membrane lipid domain. Acta Biochim. Pol. 47 (2000) 565–578.
  • 69. Isenberg, H., Kenna, J.G., Green, N.M. and Gratzer, W.B. Binding of hydrophobic ligands to spectrin. FEBS Lett. 129 (1981) 109–112.
  • 70. Kahana, E., Pinder, J.C., Smith, K.S. and Gratzer, W.B. Fluorescence quenching of spectrin and other red cell membrane cytoskeletal proteins. Relation to hydrophobic binding sites. Biochem. J. 282 (1992) 75–80.
  • 71. Bitbol, M., Dempsey, C., Watts, A. and Devaux, P.F. Weak interaction of spectrin with phosphatidylcholine-phosphatidylserine multilayers: a 2H and 31P NMR study. FEBS Lett. 244 (1989) 217–222.
  • 72. Sikorski, A.F., Michalak, K. and Bobrowska, M. Interaction of spectrin with phospholipids. Quenching of spectrin intrinsic fluorescence by phospholipid suspensions. Biochim. Biophys. Acta 904 (1987) 55–60.
  • 73. Sikorski, A.F., Michalak, K., Bobrowska, M. and Kozubek, A. Interaction of spectrin with some amphipatic compunds. Stud. Biophys. 121 (1987) 183–191.
  • 74. Sikorski, A.F. Interaction of spectrin with hydrophobic agaroses. Acta Biochim. Pol. 35 (1988) 19–27.
  • 75. Grzybek, M., Chorzalska, A., Bok, E., Hryniewicz-Jankowska, A., Czogalla, A., Diakowski, W. and Sikorski, A.F. Spectrin–phospholipid interactions. Existence of multiple kinds of binding sites? Chem. Phys. Lipids 141 (2006) 133–141.
  • 76. Sikorski, A.F., Czogalla, A., Hryniewicz-Jankowska, A., Bok, E., Plażuk, E., Diakowski, W., Chorzalska, A., Kolondra, A., Langner, M. and Grzybek, M. Interactions of erythroid and non-erythroid spectrins and other membrane skeletal proteins with lipid mono- and bilayers. in: Advances in Planar Lipid Bilayers and Liposomes (Leitmannova, L.A., Ed.), Elsevier, 2008, 81–102.
  • 77. Bialkowska, K., Zembron, A. and Sikorski, A.F. Ankyrin inhibits binding of erythrocyte spectrin to phospholipid vesicles. Biochim. Biophys. Acta 1191 (1994) 21–26.
  • 78. O'Toole, P.J., Morrison, I.E. and Cherry, R.J. Investigations of spectrin– lipid interactions using fluoresceinphosphatidylethanolamine as a membrane probe. Biochim. Biophys. Acta 1466 (2000) 39–46.
  • 79. Michalak, K., Bobrowska, M. and Sikorski, A.F. Interaction of bovine erythrocyte spectrin with aminophospholipid liposomes. Gen. Physiol. Biophys. 12 (1993) 163–170.
  • 80. Diakowski, W. and Sikorski, A.F. Interaction of brain spectrin (fodrin) with phospholipids. Biochemistry 34 (1995) 13252–13258.
  • 81. Juliano, R.L., Kimelberg, H.K. and Papahadjopoulos, D. Synergistic effects of a membrane protein (spectrin) and Ca 2+ on the Na + permeability of phospholipid vesicles. Biochim. Biophys. Acta 241 (1971) 894–905.
  • 82. Bandorowicz-Pikula, J., Sikorski, A.F., Bialkowska, K. and Sobota, A. Interaction of annexins IV and VI with phosphatidylserine in the presence of Ca2+: monolayer and proteolytic study. Mol. Membr. Biol. 13 (1996) 241–250.
  • 83. Sobota, A., Bandorowicz, J., Jezierski, A. and Sikorski, A.F. The effect of annexin IV and VI on the fluidity of phosphatidylserine/phosphatidylcholine bilayers studied with the use of 5-deoxylstearate spin label. FEBS Lett. 315 (1993) 178–182.
  • 84. Czogalla, A. and Sikorski, A.F. Spectrin and calpain: a 'target' and a 'sniper' in the pathology of neuronal cells. Cell. Mol. Life Sci. 62 (2005) 1913–1924.
  • 85. Lofvenberg, L. and Backman, L. Calpain-induced proteolysis of betaspectrins. FEBS Lett. 443 (1999) 89–92.
  • 86. Ray, S. and Chakrabarti, A. Membrane interaction of erythroid spectrin: surface-density-dependent high-affinity binding to phosphatidylethanolamine. Mol. Membr. Biol. 21 (2004) 93–100.
  • 87. Verkleij, A.J., Zwaal, R.F., Roelofsen, B., Comfurius, P., Kastelijn, D. and van Deenen, L.L. The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy. Biochim. Biophys. Acta 323 (1973) 178–193.
  • 88. van Zwieten, R., Bochem, A.E., Hilarius, P.M., van Bruggen, R., Bergkamp, F., Hovingh, G.K. and Verhoeven, A.J. The cholesterol content of the erythrocyte membrane is an important determinant of phosphatidylserine exposure. Biochim. Biophys. Acta 1821 (2012) 1493–1500.
  • 89. Diakowski, W., Prychidny, A., Swistak, M., Nietubyc, M., Bialkowska, K., Szopa, J. and Sikorski, A.F. Brain spectrin (fodrin) interacts with phospholipids as revealed by intrinsic fluorescence quenching and monolayer experiments. Biochem. J. 338 (1999) 83–90.
  • 90. Diakowski, W. and Sikorski, A.F. Brain spectrin exerts much stronger effect on anionic phospholipid monolayers than erythroid spectrin. Biochim. Biophys. Acta 1564 (2002) 403–411.
  • 91. Diakowski, W., Szopa, J. and Sikorski, A.F. Occurrence of lipid receptors inferred from brain and erythrocyte spectrins binding NaOH-extracted and protease-treated neuronal and erythrocyte membranes. Biochim. Biophys. Acta 1611 (2003) 115–122.
  • 92. Diakowski, W., Ozimek, L., Bielska, E., Bem, S., Langner, M. and Sikorski, A.F. Cholesterol affects spectrin–phospholipid interactions in a manner different from changes resulting from alterations in membrane fluidity due to fatty acyl chain composition. Biochim. Biophys. Acta 1758 (2006) 4–12.
  • 93. Simons, K. and Sampaio, J.L. Membrane organization and lipid rafts. Cold Spring Harb. Perspect. Biol. 3 (2011) a004697.
  • 94. Grzybek, M., Kozubek, A., Dubielecka, P. and Sikorski, A.F. Rafts-the current picture. Folia Histochem. Cytobiol. 43 (2005) 3–10.
  • 95. Thompson, J.M., Ellis, R.E., Green, E.M., Winlove, C.P. and Petrov, P.G. Spectrin maintains the lateral order in phosphatidylserine monolayers. Chem. Phys. Lipids 151 (2008) 66–68.
  • 96. Manno, S., Takakuwa, Y. and Mohandas, N. Identification of a functional role for lipid asymmetry in biological membranes: Phosphatidylserineskeletal protein interactions modulate membrane stability. Proc. Natl. Acad. Sci. U S A 99 (2002) 1943–1948.
  • 97. Manno, S., Mohandas, N. and Takakuwa, Y. ATP-dependent mechanism protects spectrin against glycation in human erythrocytes. J. Biol. Chem. 285 (2010) 33923–33929.
  • 98. Sarkis, J., Hubert, J.F., Legrand, B., Robert, E., Cheron, A., Jardin, J., Hitti, E., Le Rumeur, E. and Vie, V. Spectrin-like repeats 11–15 of human dystrophin show adaptations to a lipidic environment. J. Biol. Chem. 286 (2011) 30481–30491.
  • 99. Le Rumeur, E., Fichou, Y., Pottier, S., Gaboriau, F., Rondeau-Mouro, C., Vincent, M., Gallay, J. and Bondon, A. Interaction of dystrophin rod domain with membrane phospholipids. Evidence of a close proximity between tryptophan residues and lipids. J. Biol. Chem. 278 (2003) 5993–6001.
  • 100. DeWolf, C., McCauley, P., Sikorski, A.F., Winlove, C.P., Bailey, A.I., Kahana, E., Pinder, J.C. and Gratzer, W.B. Interaction of dystrophin fragments with model membranes. Biophys. J. 72 (1997) 2599–2604.
  • 101. An, X., Guo, X., Wu, Y. and Mohandas, N. Phosphatidylserine binding sites in red cell spectrin. Blood Cells Mol. Dis. 32 (2004) 430–432.
  • 102. An, X., Guo, X., Sum, H., Morrow, J., Gratzer, W. and Mohandas, N. Phosphatidylserine binding sites in erythroid spectrin: location and implications for membrane stability. Biochemistry 43 (2004) 310–315.
  • 103. Hryniewicz-Jankowska, A., Bok, E., Dubielecka, P., Chorzalska, A., Diakowski, W., Jezierski, A., Lisowski, M. and Sikorski, A.F. Mapping of an ankyrinsensitive, phosphatidylethanolamine/phosphatidylcholine mono- and bi-layer binding site in erythroid beta-spectrin. Biochem. J. 382 (2004) 677–685.
  • 104. Wolny, M., Grzybek, M., Bok, E., Chorzalska, A., Lenoir, M., Czogalla, A., Adamczyk, K., Kolondra, A., Diakowski, W., Overduin, M. and Sikorski, A.F. Key amino acid residues of ankyrin-sensitive phosphatidylethanolamine/ phosphatidylcholine-lipid binding site of betaI-spectrin. PLoS One 6 (2011) e21538.
  • 105. Bok, E., Plazuk, E., Hryniewicz-Jankowska, A., Chorzalska, A., Szmaj, A., Dubielecka, P.M., Stebelska, K., Diakowski, W., Lisowski, M., Langner, M. and Sikorski, A.F. Lipid-binding role of betaII-spectrin ankyrin-binding domain. Cell. Biol. Int. 31 (2007) 1482–1494.
  • 106. Baines, A.J. The spectrin–ankyrin-4.1-adducin membrane skeleton: adapting eukaryotic cells to the demands of animal life. Protoplasma 244 (2010) 99–131.
  • 107. Le Rumeur, E., Hubert, J.F. and Winder, S.J. A new twist to coiled coil. FEBS Lett. 586 (2012) 2717–2722.
  • 108. Kahana, E. and Gratzer, W.B. Minimum folding unit of dystrophin rod domain. Biochemistry 34 (1995) 8110–8114.
  • 109. Legardinier, S., Raguenes-Nicol, C., Tascon, C., Rocher, C., Hardy, S., Hubert, J.F. and Le Rumeur, E. Mapping of the lipid-binding and stability properties of the central rod domain of human dystrophin. J. Mol. Biol. 389 (2009) 546–558.
  • 110. Sarkis, J., Vie, V., Winder, S.J., Renault, A., Le Rumeur, E. and Hubert, J.F. Resisting sarcolemmal rupture: dystrophin repeats increase membraneactin stiffness. FASEB J. 27 (2013) 359–367.
  • 111. Vie, V., Legardinier, S., Chieze, L., Le Bihan, O., Qin, Y., Sarkis, J., Hubert, J.F., Renault, A., Desbat, B. and Le Rumeur, E. Specific anchoring modes of two distinct dystrophin rod sub-domains interacting in phospholipid Langmuir films studied by atomic force microscopy and PMIRRAS. Biochim. Biophys. Acta 1798 (2010) 1503–1511.
  • 112. Czogalla, A., Grzymajlo, K., Jezierski, A. and Sikorski, A.F. Phospholipidinduced structural changes to an erythroid beta spectrin ankyrin-dependent lipid-binding site. Biochim. Biophys. Acta 1778 (2008) 2612–2620.
  • 113. An, X., Guo, X., Gratzer, W. and Mohandas, N. Phospholipid binding by proteins of the spectrin family: a comparative study. Biochem. Biophys. Res. Commun. 327 (2005) 794–800.
  • 114. An, X., Debnath, G., Guo, X., Liu, S., Lux, S.E., Baines, A., Gratzer, W. and Mohandas, N. Identification and functional characterization of protein 4.1R and actin-binding sites in erythrocyte beta spectrin: regulation of the interactions by phosphatidylinositol-4, 5-bisphosphate. Biochemistry 44 (2005) 10681–10688.
  • 115. Franzot, G., Sjoblom, B., Gautel, M. and Djinovic Carugo, K. The crystal structure of the actin-binding domain from alpha-actinin in its closed conformation: structural insight into phospholipid regulation of alphaactinin. J. Mol. Biol. 348 (2005) 151–165.
  • 116. Young, P. and Gautel, M. The interaction of titin and alpha-actinin is controlled by a phospholipid-regulated intramolecular pseudoligand mechanism. EMBO J. 19 (2000) 6331–6340.
  • 117. Hyvonen, M., Macias, M.J., Nilges, M., Oschkinat, H., Saraste, M. and Wilmanns, M. Structure of the binding site for inositol phosphates in a PH domain. EMBO J. 14 (1995) 4676–4685.
  • 118. Scheffzek, K. and Welti, S. Pleckstrin homology (PH) like domains - versatile modules in protein-protein interaction platforms. FEBS Lett. 586 (2012) 2662–2673.
  • 119. Lemmon, M.A. Pleckstrin homology domains: two halves make a hole? Cell 120 (2005) 574–576.
  • 120. Lemmon, M.A., Ferguson, K.M. and Abrams, C.S. Pleckstrin homology domains and the cytoskeleton. FEBS Lett. 513 (2002) 71–76.
  • 121. Godi, A., Santone, I., Pertile, P., Devarajan, P., Stabach, P.R., Morrow, J.S., Di Tullio, G., Polishchuk, R., Petrucci, T.C., Luini, A. and De Matteis, M.A. ADP ribosylation factor regulates spectrin binding to the Golgi complex. Proc. Natl. Acad. Sci. USA 95 (1998) 8607–8612.
  • 122. Muresan, V., Stankewich, M.C., Steffen, W., Morrow, J.S., Holzbaur, E.L. and Schnapp, B.J. Dynactin-dependent, dynein-driven vesicle transport in the absence of membrane proteins: a role for spectrin and acidic phospholipids. Mol. Cell 7 (2001) 173–183.
  • 123. Das, A., Base, C., Manna, D., Cho, W. and Dubreuil, R.R. Unexpected complexity in the mechanisms that target assembly of the spectrin cytoskeleton. J. Biol. Chem. 283 (2008) 12643–12653.
  • 124. Bialkowska, K., Zembron, A. and Sikorski, A.F. Ankyrin shares a binding site with phospholipid vesicles on erythrocyte spectrin. Acta Biochim. Pol. 41 (1994) 155–157.
  • 125. Bialkowska, K., Lesniewski, J., Nietubyc, M. and Sikorski, A.F. Interaction of spectrin with phospholipids is inhibited by isolated erythrocyte ankyrin. A monolayer study. Cell. Mol. Biol. Lett. 4 (1999) 203–218.
  • 126. Kennedy, S.P., Warren, S.L., Forget, B.G. and Morrow, J.S. Ankyrin binds to the 15th repetitive unit of erythroid and non-erythroid beta-spectrin. J. Cell Biol. 115 (1991) 267–277.
  • 127. Stabach, P.R., Simonovic, I., Ranieri, M.A., Aboodi, M.S., Steitz, T.A., Simonovic, M. and Morrow, J.S. The structure of the ankyrin-binding site of beta-spectrin reveals how tandem spectrin-repeats generate unique ligand-binding properties. Blood 113 (2009) 5377–5384.
  • 128. Czogalla, A., Jaszewski, A.R., Diakowski, W., Bok, E., Jezierski, A. and Sikorski, A.F. Structural insight into an ankyrin-sensitive lipid-binding site of erythroid beta-spectrin. Mol. Membr. Biol. 24 (2007) 215–224.
  • 129. Davis, L., Abdi, K., Machius, M., Brautigam, C., Tomchick, D.R., Bennett, V. and Michaely, P. Localization and structure of the ankyrin-binding site on beta2-spectrin. J. Biol. Chem. 284 (2009) 6982–6987.
  • 130. Ipsaro, J.J., Huang, L. and Mondragon, A. Structures of the spectrin– ankyrin interaction binding domains. Blood 113 (2009) 5385–5393.
  • 131. Ipsaro, J.J. and Mondragon, A. Structural basis for spectrin recognition by ankyrin. Blood 115 (2010) 4093–4101.
  • 132. Pazdzior, G., Chorzalska, A., Czogalla, A., Borowik, T., Sikorski, A.F. and Langner, M. Fluorescence approach to evaluating conformational changes upon binding of beta-spectrin ankyrin-binding domain mutants with the lipid bilayer. Gen. Physiol. Biophys. 28 (2009) 283–293.
  • 133. Grum, V.L., Li, D., MacDonald, R.I. and Mondragon, A. Structures of two repeats of spectrin suggest models of flexibility. Cell 98 (1999) 523–535.
  • 134. Chorzalska, A., Lach, A., Borowik, T., Wolny, M., Hryniewicz-Jankowska, A., Kolondra, A., Langner, M. and Sikorski, A.F. The effect of the lipidbinding site of the ankyrin-binding domain of erythroid beta-spectrin on the properties of natural membranes and skeletal structures. Cell. Mol. Biol. Lett. 15 (2010) 406–423.
  • 135. Drin, G. and Antonny, B. Amphipathic helices and membrane curvature. FEBS Lett. 584 (2010) 1840–1847.
  • 136. Sikorski, A.F. and Jezierski, A. Influence of spectrin on the fluidity of erythrocyte membrane. Stud. Biophys. 113 (1986) 193–201.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-342b3d78-ad67-4f10-bedf-ff04ca2f43a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.