PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 64 | 2 |

Tytuł artykułu

Ontogenetic stages of ceratopsian dinosaur Psittacosaurus in bone histology

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The early ceratopsians Psittacosaurus and Protoceratops have provided important information on dinosaurian development because of abundant specimens of adults, subadults, juveniles, and even hatchlings. Here we present new data and methods for identifying key growth stages from bone histology. Previous studies on Psittacosaurus lujiatunensis from the Early Cretaceous Jehol Biota of China did not present in-depth analysis of growth patterns. Based on a histological study of 43 thin sections from 17 individuals of this species, we recognize four histological ontogenetic stages, i.e., hatchling, juvenile, sub-adult, and adult, but no fully-grown stage. We estimate life history and longevity from diaphyseal growth line counts and other features of histology. We show that P. lujiatunensis grew fast in early stages (hatchling, juvenile, and subadult), according to the density of vascular canals and the different type of bone tissue; the deposition of parallel fibred bone tissue in the outer cortex of the subadult stage indicates that growth rate was slowing down. We introduce a new graphical method to estimate the occurrence and volumes of vascular canals from thin sections more accurately than current two-dimensional approaches.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

64

Numer

2

Opis fizyczny

p.323-334,fig.,ref.

Twórcy

autor
  • Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, China
  • Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
autor
  • School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK
autor
  • Department of Biosphere-Geosphere Science, Okayama University of Science, Okayama, 700-0005, Japan
autor
  • Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, China
  • Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China

Bibliografia

  • An, Y.H. and Martin, K.L. 2003. Handbook of Histology Methods for Bone and Cartilage. 588 pp. Springer Science & Business Media, New York.
  • Castanet, J. 2006. Time recording in bone microstructures of endothermic animals; functional relationships. Comptes Rendus Palevol 5: 629–636.
  • Castanet, J., Francillon-Vieillot, H., Meunier, F.J. and Ricqlès, A. de 1993. Bone and individual aging. In: B.K. Hall (ed.), Bone. Volume 7: Bone growth B, 245–283. CRC Press, Boca Raton.
  • Chinsamy, A. and Tumarkin-Deratzian, A. 2009. Pathologic bone tissues in a Turkey vulture and a nonavian dinosaur: implications for interpreting endosteal bone and radial fibrolamellar bone in fossil dinosaurs. The Anatomical Record 292: 1478–1484.
  • Chinsamy-Turan, A. 2005. The Microstructure of Dinosaur Bone: Deciphering Biology with Fine-scale Techniques. 195 pp. The Johns Hopkins University Press, Baltimore.
  • de Margerie, E., Robin, J.-P., Verrier, D., Cubo, J., Groscolas, R., and Castanet, J. 2004. Assessing a relationship between bone microstructure and growth rate: a fluorescent labelling study in the king penguin chick (Aptenodytes patagonicus). Journal of Experimental Biology 207: 869–879.
  • Erickson, G.M. 2005. Assessing dinosaur growth patterns: a microscopic revolution. Trends in Ecology & Evolution 20: 677–684.
  • Erickson, G.M. and Tumanova, T.A. 2000. Growth curve of Psittacosaurus mongoliensis Osborn (Ceratopsia: Psittacosauridae) inferred from long bone histology. Zoological Journal of the Linnean Society 130: 551–566.
  • Erickson, G.M., Currie, P.J., Inouye, B.D., and Winn, A.A. 2006. Tyrannosaur life tables: An example of nonavian dinosaur population biology. Science 313: 213–217.
  • Erickson, G.M., Makovicky, P. J., Currie, P. J., Norell, M.A., Yerby, S.A., and Brochu, C.A. 2004. Gigantism and comparative life-history parameters of tyrannosaurid dinosaurs. Nature 430: 772–775.
  • Erickson, G.M., Makovicky, P.J., Inouye, B.D., Zhou, C.F., and Gao, K.Q. 2009. A life table for Psittacosaurus lujiatunensis: initial insights into ornithischian dinosaur population biology. The Anatomical Record 292: 1514–1521.
  • Erickson, G.M., Makovicky, P.J., Inouye, B.D., Zhou, C.F., and Gao, K.Q. 2015. Flawed analysis? A response to Myrhvold. The Anatomical Record 298: 1669–1672
  • Erickson, G.M., Rogers, K.C., Varrichio, D.J., Norell, M.A., and Xu, X. 2007. Growth patterns in brooding dinosaurs reveals the timing of sexual maturity in non-avian dinosaurs and genesis of the avian condition. Biology Letters 3: 558–561.
  • Erickson, G.M., Rogers, K.C., and Yerby, S.A. 2001. Dinosaurian growth patterns and rapid avian growth rates. Nature 412: 429–433.
  • Francillon-Vieillot, H., Buffrénil, V. de, Castanet, J., Géraudie, J., Meunier, F.J., Sire, J.Y., Zylberberg, L. and Ricqlès, A. de 1990. Microstructure and mineralization of vertebrate skeletal tissues. In: J.G. Carter (ed.), Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends. Vol. 1, 471–530. Van Nostrand Reinhold, New York.
  • Horner, J.R., Ricqlès, A. de, and Padian, K. 1999. Variation in dinosaur skeletochronology indicators: implications for age assessment and physiology. Paleobiology 25: 295–304.
  • Horner, J.R., Ricqlès, A. de, and Padian, K. 2000. Long bone histology of the hadrosaurid dinosaur Maiasaura peeblesorum: Growth dynamics and physiology based on an ontogenetic series of skeletal elements. Journal of Vertebrate Paleontology 20: 115–129.
  • Kerp, H. and Bomfleur, B. 2011. Photography of plant fossils—new techniques, old tricks. Review of Palaeobotany & Palynology 166: 117–151.
  • Klein, N. and Sander, M. 2008. Ontogenetic stages in the long bone histology of sauropod dinosaurs. Paleobiology 34: 247–263.
  • Klein, N., Sander, M., and Suteethorn, V. 2009. Bone histology and its implications for the life history and growth of the Early Cretaceous titanosaur Phuwiangosaurus sirindhornae. Geological Society, London, Special Publications 315: 217–228.
  • Köhler, M., Marin-Mortalla, N., Jordana, X., and Aanes, R. 2012. Seasonal bone growth and physiology in endotherms shed light on dinosaur physiology. Nature 487: 358–361.
  • Myhrvold, N.P. 2013. Revisiting the estimation of dinosaur growth rates. PLoS One 8 : e81917.
  • Myhrvold, N.P. 2015. Problems in Erickson et al. 2009. The Anatomical Record 298: 489–493.
  • Padian, K. and Lamm, W. 2013. Bone Histology of Fossil Tetrapods: Advancing Methods, Analysis, and Interpretation. 285 pp. University of California Press, Berkeley.
  • Ricqlès, A. de, Meunier, F.J., Castanet, J., and Francillon-Vieillot, H. 1991. Comparative microstructure of bone. In: B.K. Hall (ed.), Bone. Vol. 3: Bone Matrix and Bone Specific Products, 1–78. CRC Press, Boca Raton.
  • Sander, P. M. 2000. Longbone histology of the Tendaguru sauropods: implications for growth and biology. Paleobiology 26: 466–488.
  • Sander, P. M. and Klein, N. 2005. Developmental plasticity in the life history of a prosauropod dinosaur. Science 310: 1800–1802.
  • Sander P. M., Klein, N., Buffetaut, E., Cuny, G., Suteethorn, V., and Le Loeuff, J. 2004. Adaptive radiation in sauropod dinosaurs: bone histology indicates rapid evolution of giant body size through acceleration. Organisms Diversity & Evolution 4: 165–173.
  • Selden, P.A. and Penney, D. 2017. Imaging techniques in the study of fossil spiders. Earth-Science Reviews 166: 111–131.
  • Wang, S., Zhang, S.K., Sullivan, C., and Xu, X. 2016. Elongatoolithid eggs containing oviraptorid (Theropoda, Oviraptorosauria) embryos from the Upper Cretaceous of Southern China. BMC Evolutionary Biology 16: 67.
  • Woodward, H. N., Freedman Fowler, E.A., Farlow, J.O., and Horner, J.R. 2015. Maiasaura, a model organism for extinct vertebrate population biology: a large sample statistical assessment of growth dynamics and survivorship. Paleobiology 41: 503–527.
  • Woodward, H.N., Horner, J.R., and Farlow, J.O. 2014. Quantification of intraskeletal histovariability in Alligator mississippiensis and implications for vertebrate osteohistology. PeerJ 2: e422.
  • Zhao, Q., Benton, M.J., Sullivan, C., Sander, M.P., and Xu, X. 2013. Histology and postural change during the growth of the ceratopsian dinosaur Psittacosaurus lujiatunensis. Nature Communications 4: 2079.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-33c24327-02b1-4a3a-8250-03b44f22a3f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.