PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 3 |

Tytuł artykułu

Functional traits and reproductive allocation strategy of Conyza canadensis as they vary by invasion degree along a latitude gradient

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study aims to determine the functional traits and reproductive allocation (RA) strategy of the invasive plant Conyza canadensis across different invasion degrees along a latitude gradient in China. Invasion degree did not affect the functional traits and RA strategy of C. canadensis significantly. The high proportion of reproductive biomass (allocating approximately 20% of total biomass into reproductive behaviors) of C. canadensis across different invasion degrees can achieve a fitness advantage in broadening its habitat niches and can eventually attain a successful invasion. The higher proportion of reproductive biomass of C. canadensis in warm temperate and subtropical monsoon climatic zones may play an important role in its successful invasion in the two climatic zones in China. One possible reason for this is that eastern China and northern China, in which C. canadensis vigorously occurs, have the same or similar climate as their natural habitat in the original distribution region. The proportion of reproductive biomass of C. canadensis positively correlated with its total biomass, aboveground biomass, belowground biomass, and vegetative biomass, as well as with its height and leaf size. Meanwhile, temperature rather than annual sunshine hours or annual precipitation was determined to be the most important environmental factor that triggers pronounced effects on the RA strategy of C. canadensis.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

3

Opis fizyczny

p.1289-1297,fig.,ref.

Twórcy

autor
  • Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
  • State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, P. R. China
autor
  • Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
autor
  • Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
autor
  • Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
autor
  • Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, P. R. China

Bibliografia

  • 1. SI C.C., LIU X.Y. WANG C.Y., WANG L., DAI Z.C., QI S.S., DU D.L. Different degrees of plant invasion significantly affect the richness of the soil fungal community. PLoS ONE 8, e85490, 2013.
  • 2. WANG C.Y., XIAO H.G., ZHAO L.L., LIU J., WANG L., ZHANG F., SHI Y.C., DU D.L. The allelopathic effects of invasive plant Solidago canadensis on seed germination and growth of Lactuca sativa enhanced by different types of acid deposition. Ecotoxicology 25, 555, 2016.
  • 3. CASTRO S., FERRERO V., COSTA J., SOUSA A.J., CASTRO M., NAVARRO L., LOUREIRO J. Reproductive strategy of the invasive Oxalis pescaprae: distribution patterns of floral morphs, ploidy levels and sexual reproduction. Biol. Invasions 5, 1863, 2013.
  • 4. SUDING K.N., LAVOREL S., CHAPIN F.S., CORNELISSEN J.H.C., DÍAZ S., GARNIER E., GOLDBERG D., HOOPER D.U., JACKSON S.T., NAVAS M.-L. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Global Change Biol. 14, 1125, 2008.
  • 5. CLELAND E.E. Trait divergence and the ecosystem impacts of invading species. New Phytol. 189, 649, 2011.
  • 6. WEINER J., ROSENMEIER I., MASSONI E.S., VERA J.N., PLAZA E.H., SEBASTIA M.T. Is reproductive allocation in Senecio vulgaris plastic. Botany 87, 475, 2009.
  • 7. NIU K.C., SCHMID B., CHOLER P., DU G.Z. Relationship between reproductive allocation and relative abundance among 32 species of a Tibetan alpine meadow: Effects of fertilization and grazing. PLoS ONE 7, e35448, 2012.
  • 8. WANG X.Z., TAUB D.R., JABLONSKI L.M. Reproductive allocation in plants as affected by elevated carbon dioxide and other environmental changes: a synthesis using metaanalysis and graphical vector analysis. Oecologia 177, 1075, 2015.
  • 9. WILSON S.D., PINNO B.D. Environmentally-contingent behaviour of invasive plants as drivers or passengers. Oikos 122, 129, 2013.
  • 10. WANG C.Y., ZHOU J.W., LIU J., WANG L., XIAO H.G. Reproductive allocation strategy of two herbaceous invasive plants across different cover classes. Pol. J. Environ. Stud. 26, 355, 2017.
  • 11. HAO J.H., QIANG S., CHROBOCK T., VAN KLEUNEN M., LIU Q.Q. A test of Baker’s Law: Breeding systems of invasive species of Asteraceae in China. Biol. Invasions 13, 571, 2011.
  • 12. WEBER E., SUN S.Q., LI B. Invasive alien plants in China: diversity and ecological insights. Biol. Invasions 10, 1411, 2008.
  • 13. MAIN C.L., STECKEL L.E., HAYES R.M., MUELLER T.C. Biotic and abiotic factors influence horseweed emergence. Weed Sci. 54, 1101, 2006.
  • 14. BONSER S.P., AARSSEN L.W. Interpreting reproductive allometry: individual strategies of allocation explain size-dependent reproduction in plant populations. Perspect Plant Ecol. 11, 31, 2009.
  • 15. HAUTIER Y., RANDIN C.F., STÖCKLIN J., GUISAN A. Changes in reproductive investment with altitude in an alpine plant. J. Plant Ecol. 2, 125, 2009.
  • 16. MUNGER P., BLEIHOLDER H., HACK H., HEß M., STAUSS R., VAN DEN BOOM T., WEBER E. Phenological growth stages of the peanut plant (Arachis hypogaea L.): Codification and description according to the BBCH Scale. J. Agron. Crop Sci. 180, 101, 1998.
  • 17. WANG Z., ZHANG L. Leaf shape alters the coefficients of leaf area estimation models for Saussurea stoliczkai in central Tibet. Photosynthetica 50, 337, 2012.
  • 18. XIAO H.G., WANG C.Y., LIU J., WANG L., DU D.L. Insights into the differences in leaf functional traits of heterophyllous Syringa oblata under different light intensities. J. For. Res. 26, 613, 2015.
  • 19. WANG C.Y., LIU J., XIAO H.G., DU D.L. Response of leaf functional traits of Cerasus yedoensis (Mats.) Yü li to serious insect attack. Pol. J. Environ. Stud. 25, 333, 2016.
  • 20. WANG C.Y., XIAO H.G., LIU J., ZHOU J.W., DU D.L. Insights into the effects of simulated nitrogen deposition on leaf functional traits of Rhus typhina. Pol. J. Environ. Stud. 25, 1279, 2016.
  • 21. SZYMURA M., SZYMURA T.H. Growth, phenology, and biomass allocation of alien Solidago species in Central Europe. Plant Species Biol. 30, 245, 2015.
  • 22. SHANNON C.E., WEAVER W. The mathematical theory of communication. University of Illinois Press, Urbana, Illinois, 1, 1949.
  • 23. SIMPSON E.H. Measurement of diversity. Nature 163, 688, 1949.
  • 24. PIELOU E.C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131, 1966.
  • 25. MOLES A.T., WARTON D.I., WARMAN L., SWENSON N.G., LAFFAN S.W., ZANNE A.E., PITMAN A., HEMMINGS F.A., LEISHMAN M.R. Global patterns in plant height. J. Ecol. 97, 923, 2009.
  • 26. THOMSON F.J., MOLES A.T., AULD T.D., KINGSFORD R.T. Seed dispersal distance is more strongly correlated with plant height than with seed mass. J. Ecol. 99, 1299, 2011.
  • 27. DE FRENNE P., GRAAE B.J., RODRÍGUEZ-SÁNCHEZ F., KOLB A., CHABRERIE O., DECOCQ G., DE KORT H., DE SCHRIJVER A., DIEKMANN M., ERIKSSON O., GRUWEZ R., HERMY M., LENOIR J., PLUE J., COOMES D.A., VERHEYEN K. Latitudinal gradients as natural laboratories to infer species’ responses to temperature. J. Ecol. 101, 784, 2013.
  • 28. STANDISH R.J., ROBERTSON A.W., WILLIAMS P.A. The impact of an invasive weed Tradescantia fluminensis on native forest regeneration. J. Appl. Ecol. 38, 1253, 2001.
  • 29. HWANG B.C., LAUENROTH W.K. Effect of nitrogen, water and neighbor density on the growth of Hesperis matronalis and two native perennials. Biol. Invasions 10, 771, 2008.
  • 30. PING X.Y., JIA B.R., YUAN W.P., WANG F.Y., WANG Y.H., ZHOU L., XU Z.Z., ZHOU G.S. Biomass allocation of Leymus chinensis population: A dynamic simulation study. Chin. J. Appl. Ecol. 18, 2699, 2007. (In Chinese)
  • 31. LIU H.Y., LIN Z.S., QI X.Z., ZHANG M.Y., YANG, H. The relative importance of sexual and asexual reproduction in the spread of Spartina alterniflora using a spatially explicit individual-based model. Ecol. Res. 29, 905, 2014.
  • 32. BONSER S.P. High reproductive efficiency as an adaptive strategy in competitive environments. Funct. Ecol. 27, 876, 2013.
  • 33. DRAKE D.R., UNGAR I.A. Effect of salinity, nitrogen and population density on the survival, growth, and reproduction of Atriplex Triangularis (Chenopodiaceae). Am. J. Bot. 76, 112, 1989.
  • 34. VAN KLEUNEN M., WEBER E., FISCHER M. A metaanalysis of trait differences between invasive and non-invasive plant species. Ecol. Lett. 13, 235, 2010.
  • 35. MENG F.Q., CAO R., YANG D.M., NIKLAS K.J., SUN S.C. Trade-offs between light interception and leaf water shedding: A comparison of shade- and sun-adapted species in a subtropical rainforest. Oecologia 174, 13, 2014.
  • 36. MOLES A.T., PERKINS S.E., LAFFAN S.W., FLORES-MORENO H., AWASTHY M., TINDALL M.L., SACK L., PITMAN A., KATTGE J., AARSSEN L.W., ANAND M., BAHN M., BLONDER B., CAVENDER-BARES J., CORNELISSEN J.H.C., CORNWELL W.K., DÍAZ S., DICKIE J.B., FRESCHET G.T., GRIFFITHS J.G., GUTIERREZ A.G., HEMMINGS F.A., HICKLER T., HITCHCOCK T.D., KEIGHERY M., KLEYER M., KUROKAWA H., LEISHMAN M.R., LIU K., NIINEMETS Ü., ONIPCHENKO V., ONODA Y., PENUELAS J., PILLAR V.D., REICH P.B., SHIODERA S., SIEFERT A., JR E.E.S., SOUDZILOVSKAIA N.A., SWAINE E.K., SWENSON N.G., VAN BODEGOM P.M., WARMAN L., WEIHER E., WRIGHT I.J., ZHANG H.X., ZOBEL M., BONSER S.P. Which is a better predictor of plant traits: temperature or precipitation? J. Veg. Sci. 25, 1167, 2014.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-3392c4cd-bf53-469a-8cd4-1c2296cfcfe0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.