PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 23 |

Tytuł artykułu

ClC-2 knockdown prevents cerebrovascular remodeling via inhibition of the Wnt/βcatenin signaling pathway

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background: Mishandling of intracellular chloride (Cl−) concentration ([Cl−]i) in cerebrovascular smooth muscle cells is implicated in several pathological processes, including hyperplasia and remodeling. We investigated the effects of ClC-2-mediated Cl− efflux on the proliferation of human brain vascular smooth muscle cells (HBVSMCs) induced by angiotensin II (AngII). Methods: Cell proliferation and motility were determined using the CCK-8, bromodeoxyuridine staining, wound healing and invasion assays. ClC-2, PCNA, Ki67, survivin and cyclin D1 expression, and β-catenin and GSK-3β phosphorylation were examined using western blotting. Histological analyses were performed using hematoxylin and eosin staining and α-SMA staining. Results: Our results showed that AngII-induced HBVSMC proliferation was accompanied by a decrease in [Cl− ]i and an increase in ClC-2 expression. Inhibition of ClC-2 by siRNA prevented AngII from inducing the efflux of Cl− . AngII-induced HBVSMC proliferation, migration and invasion were significantly attenuated by ClC-2 downregulation. The inhibitory effects of ClC-2 knockout on HBVSMC proliferation and motility were associated with inactivation of the Wnt/β-catenin signaling pathway, as evidenced by inhibition of β-catenin phosphorylation and nuclear translocation, and decrease of GSK-3β phosphorylation and survivin and cyclin D1 expression. Recombinant Wnt3a treatment markedly reversed the effect of ClC-2 knockdown on HBVSMC viability. An in vivo study revealed that knockdown of ClC-2 with shRNA adenovirus ameliorated basilar artery remodeling by inhibiting Wnt/β-catenin signaling in AngII-treated mice. Conclusion: This study demonstrates that blocking ClC-2-mediated Cl− efflux inhibits AngII-induced cerebrovascular smooth muscle cell proliferation and migration by inhibiting the Wnt/β-catenin pathway. Our data indicate that downregulation of ClC-2 may be a viable strategy in the prevention of hyperplasia and remodeling of cerebrovascular smooth muscle cells.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

23

Opis fizyczny

p.1-13,fig.,ref.

Twórcy

autor
  • Department of Neurology, Henan People’s Hospital, No. 7 Wai-5 Road, Zhengzhou 450052, Henan Province, China
autor
  • Department of Neurology, Henan People’s Hospital, No. 7 Wai-5 Road, Zhengzhou 450052, Henan Province, China
autor
  • Department of Neurology, Henan People’s Hospital, No. 7 Wai-5 Road, Zhengzhou 450052, Henan Province, China
autor
  • Department of Neurology, Henan People’s Hospital, No. 7 Wai-5 Road, Zhengzhou 450052, Henan Province, China
autor
  • Department of Neurology, Henan People’s Hospital, No. 7 Wai-5 Road, Zhengzhou 450052, Henan Province, China

Bibliografia

  • 1. Heistad DD, Baumbach GL. Cerebral vascular changes during chronic hypertension: good guys and bad guys. J Hypertens Suppl. 1992;10:S71–75.
  • 2. Bihl JC, Zhang C, Zhao Y, Xiao X, Ma X, Chen Y, Chen S, Zhao B, Chen Y. Angiotensin-(1-7) counteracts the effects of Ang II on vascular smooth muscle cells, vascular remodeling and hemorrhagic stroke: role of the NFsmall ka, CyrillicB inflammatory pathway. Vasc Pharmacol. 2015;73:115–23.
  • 3. Ma MM, Lin CX, Liu CZ, Gao M, Sun L, Tang YB, Zhou JG, Wang GL, Guan YY. Threonine532 phosphorylation in ClC-3 channels is required for angiotensin II-induced Cl(−) current and migration in cultured vascular smooth muscle cells. Br J Pharmacol. 2016;173:529–44.
  • 4. Galatioto J, Caescu CI, Hansen J, Cook JR, Miramontes I, Iyengar R, Ramirez F. Cell type-specific contributions of the angiotensin II type 1a receptor to aorta homeostasis and aneurysmal disease-brief report. Arterioscler Thromb Vasc Biol. 2018;38:588–91.
  • 5. McKinney CA, Fattah C, Loughrey CM, Milligan G, Nicklin SA. Angiotensin-(1-7) and angiotensin-(1-9): function in cardiac and vascular remodelling. Clin Sci (Lond). 2014;126:815–27.
  • 6. Nilius B, Droogmans G. Amazing chloride channels: an overview. Acta Physiol Scand. 2003;177:119–47.
  • 7. Wu QQ, Liu XY, Xiong LX, Shang JY, Mai XY, Pang RP, Su YX, Yu BX, Yuan JN, Yang C, et al. Reduction of intracellular chloride concentration promotes foam cell formation. Circ J. 2016;80:1024–33.
  • 8. Liu J, Zhang FF, Li L, Yang J, Liu J, Guan YY, Du YH. ClC-3 deficiency prevents apoptosis induced by angiotensin II in endothelial progenitor cells via inhibition of NADPH oxidase. Apoptosis. 2013;18:1262–73.
  • 9. Yang H, Huang LY, Zeng DY, Huang EW, Liang SJ, Tang YB, Su YX, Tao J, Shang F, Wu QQ, et al. Decrease of intracellular chloride concentration promotes endothelial cell inflammation by activating nuclear factor-kappaB pathway. Hypertension. 2012;60:1287–93.
  • 10. Zheng LY, Li L, Ma MM, Liu Y, Wang GL, Tang YB, Zhou JG, Lv XF, Du YH, Guan YY. Deficiency of volume-regulated ClC-3 chloride channel attenuates cerebrovascular remodelling in DOCA-salt hypertension. Cardiovasc Res. 2013;100:134–42.
  • 11. Tao J, Liu CZ, Yang J, Xie ZZ, Ma MM, Li XY, Li FY, Wang GL, Zhou JG, Du YH, Guan YY. ClC-3 deficiency prevents atherosclerotic lesion development in ApoE−/− mice. J Mol Cell Cardiol. 2015;87:237–47.
  • 12. Grodin JL, Simon J, Hachamovitch R, Wu Y, Jackson G, Halkar M, Starling RC, Testani JM, Tang WH. Prognostic role of serum chloride levels in acute decompensated heart failure. J Am Coll Cardiol. 2015;66:659–66.
  • 13. Lamb FS, Clayton GH, Liu BX, Smith RL, Barna TJ, Schutte BC. Expression of CLCN voltage-gated chloride channel genes in human blood vessels. J Mol Cell Cardiol. 1999;31:657–66.
  • 14. Wang H, Xu M, Kong Q, Sun P, Yan F, Tian W, Wang X. Research and progress on ClC2 (review). Mol Med Rep. 2017;16:11–22.
  • 15. Cheng G, Kim MJ, Jia G, Agrawal DK. Involvement of chloride channels in IGF-I-induced proliferation of porcine arterial smooth muscle cells. Cardiovasc Res. 2007;73:198–207.
  • 16. Clevers H, Nusse R. Wnt/beta-catenin signaling and disease. Cell. 2012;149:1192–205.
  • 17. Mill C, George SJ. Wnt signalling in smooth muscle cells and its role in cardiovascular disorders. Cardiovasc Res. 2012;95:233–40.
  • 18. Marchand A, Atassi F, Gaaya A, Leprince P, Le Feuvre C, Soubrier F, Lompre AM, Nadaud S. The Wnt/beta-catenin pathway is activated during advanced arterial aging in humans. Aging Cell. 2011;10:220–32.
  • 19. Takahashi J, Orcholski M, Yuan K, de Jesus Perez V. PDGF-dependent beta-catenin activation is associated with abnormal pulmonary artery smooth muscle cell proliferation in pulmonary arterial hypertension. FEBS Lett. 2016;590:101–9.
  • 20. Sacco RL, Benjamin EJ, Broderick JP, Dyken M, Easton JD, Feinberg WM, Goldstein LB, Gorelick PB, Howard G, Kittner SJ, et al. American Heart Association prevention conference. IV. Prevention and rehabilitation of stroke. Risk factors. Stroke. 1997;28:1507–17.
  • 21. Sardini A, Amey JS, Weylandt KH, Nobles M, Valverde MA, Higgins CF. Cell volume regulation and swelling-activated chloride channels. Biochim Biophys Acta. 2003;1618:153–62.
  • 22. Grunder S, Thiemann A, Pusch M, Jentsch TJ. Regions involved in the opening of CIC-2 chloride channel by voltage and cell volume. Nature. 1992;360:759–62.
  • 23. Thiemann A, Grunder S, Pusch M, Jentsch TJ. A chloride channel widely expressed in epithelial and non-epithelial cells. Nature. 1992;356:57–60.
  • 24. Wang M, Yang H, Zheng LY, Zhang Z, Tang YB, Wang GL, Du YH, Lv XF, Liu J, Zhou JG, Guan YY. Downregulation of TMEM16A calcium-activated chloride channel contributes to cerebrovascular remodeling during hypertension by promoting basilar smooth muscle cell proliferation. Circulation. 2012;125:697–707.
  • 25. Tsaousi A, Williams H, Lyon CA, Taylor V, Swain A, Johnson JL, George SJ. Wnt4/beta-catenin signaling induces VSMC proliferation and is associated with intimal thickening. Circ Res. 2011;108:427–36.
  • 26. Tsaousi A, Mill C, George SJ. The Wnt pathways in vascular disease: lessons from vascular development. Curr Opin Lipidol. 2011;22:350–7.
  • 27. Cui M, Cai Z, Chu S, Sun Z, Wang X, Hu L, Yi J, Shen L, He B. Orphan nuclear receptor Nur77 inhibits angiotensin II-induced vascular remodeling via downregulation of beta-catenin. Hypertension. 2016;67:153–62.
  • 28. Hua JY, He YZ, Xu Y, Jiang XH, Ye W, Pan ZM. Emodin prevents intima thickness via Wnt4/Dvl-1/beta-catenin signaling pathway mediated by miR-126 in balloon-injured carotid artery rats. Exp Mol Med. 2015;47:e170.
  • 29. Novellasdemunt L, Antas P, Li VS. Targeting Wnt signaling in colorectal cancer. A review in the theme: cell signaling: proteins, pathways and mechanisms. Am J Physiol Cell Physiol. 2015;309:C511–21.
  • 30. Yang CT, Li JM, Li LF, Ko YS, Chen JT. Stomatin-like protein 2 regulates survivin expression in non-small cell lung cancer cells through beta-catenin signaling pathway. Cell Death Dis. 2018;9:425.
  • 31. Altieri DC. Survivin, cancer networks and pathway-directed drug discovery. Nat Rev Cancer. 2008;8:61–70.
  • 32. Qu K, Wang Z, Fan H, Li J, Liu J, Li P, Liang Z, An H, Jiang Y, Lin Q, et al. MCM7 promotes cancer progression through cyclin D1-dependent signaling and serves as a prognostic marker for patients with hepatocellular carcinoma. Cell Death Dis. 2017;8:e2603.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-32f448ab-09e6-4e0f-9a03-0b8618e9edb0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.