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Summary. The authors proposed a new version of lowering
dimensionality in the application of the method of lines. The
basic idea is lowering the dimensionality of input equations
per the spatial coordinate by projection method, including the
Bubnov-Galerkin method.
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INTRODUCTION

The authors proposed a new version of lowering di-
mensionality in the application of the method of lines. It is
greatly expanding the capabilities of method of lines. The
proposed generalized method of lines may be used for cal-
culating the plates of variable thickness, and also problems
of dynamics. The basic idea of generalized method of lines
is lowering the dimensionality of input equations per the
spatial coordinate by projection method. The projection
method includes the Bubnov-Galerkin method, generalized
by Petrov [4].

PURPOSE OF WORK

One of the most effective methods of solving multidi-
mensional problems of structural mechanics is the combi-
nation approach. In this approach a problem is solved in
two stages:

1) decreasing the dimension of the input equations by one
or two coordinates;

2) the reduced problem is solved analytically or numeri-
cally.

Traditionally in structural mechanics, lowering dimen-
sionality of input equations is based on certain hypotheses.
Accordingly, the first stage of the method was excluded
in a separate research: theory of rods, plates and, shells.

Applied hypotheses were strong enough but less accurate.
It lead to creation of various theories of plates and shells.

Currently, lowering dimensionality is performed using
mathematical methods (for example, the theory of shells
I.N.Vekua [1]). With the next solution of reduced equa-
tions, lowering the dimension creates a combined method
for solving problems of mathematical physics. Such meth-
ods include Vlasov-Kantorovich’s method. These combined
methods are alternative, compared to the general numerical
methods such as finite element method, finite difference and
variation-difference method.

Mathematical methods of lowering dimensionality are
associated with the geometrical characteristics of the con-
sidered objects. It greatly restricts the geometry of the prob-
lems, for which it is possible to use the combined methods.
However, limiting the complexity of the geometry allows the
application of very efficient numerical methods. It increases
the accuracy and stability of numerical calculation. It also
significantly reduces computer time using.

One of the known methods of lowering dimensionality
input equations is the “method of lines”. In this method, the
finite difference method is used for one of the two coordi-
nates. This method will be effective, if the input equations
are systems of ordinary differential equations. In the case
of constant coefficients in these equations, it is possible to
use analytical solution of system of equations (Vinokurov
[2], Shkelov L.T. [3]). In this regard, the method of lines is
used for the solution of static problems for plates and shells
of constant thickness.

The authors proposed a new version of lowering di-
mensionality in the application of the method of lines. It is
greatly expanding the capabilities of method of lines. The
proposed generalized method of lines may be used for cal-
culating the plates of variable thickness, and also problems
of dynamics. The basic idea of generalized method of lines
is lowering the dimensionality of input equations per the
spatial coordinate by projection method. The projection
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method includes the Bubnov-Galerkin method, generalized
by Petrov [4].

In the case of thick plates with constant thickness for
equations of plate deformations per thickness, locally basic
restricted discrete linear functions are chosen (Fig. 1.).
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Fig. 1. Basis functions

As in the traditional version of the method of lines,
a cross-section of the plate is divided into inflict n lines
(including two boundary lines) with an equal range A. How-
ever, in order to reduce dimensionality, we do not use method
of finite differences, but the generalized method of Bub-
nov-Galerkin-Petrov. By coordinate y the unknown func-
tions f(x,y) is approximated in this manner:

VACSUENNCIRACH! e

The constructed algorithm of lowering dimensionality
formally resembles algebraic transformations of tensor cal-
culus. In this connection, the generalized method of lines
essentially tensor symbols and relevant rules are used. For
example, by repeated indexes is assumed summation. Re-
solving equations according to Bubnov-Galerkin method,
after substituting approximate ratios of the form (1) are
scalar multiplied in Hilbert space for basic functions ¢,(y).

It should be noted that in Bubnov-Galerkin method, the
basis functions must satisfy the homogeneous boundary
conditions per coordinate y . These basis functions do not
satisfy such conditions. However, according to the general-
ization of Petrov [4] it is enough that these functions satisfy
natural boundary conditions. It should be noted that in the
construction of reduced equations for intensive unknowns
(displacement in the theory of elasticity) and extensive un-
knowns (stresses) transformation of corresponding compo-
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nents is performed differently. Herewith we get two basic
matrices — and D , which are recorded in an index form

do.
as: g, =(9,9,), b, = ((pl.,%). This is the scalar product
of two functions: 4

(@0 0) = [ @) 0,(»)-dy. )

Conversion of components with derivative y of the
function 72 -type displacement and stresses-type functions
is formed in different ways. This is the use of lowering
dimension of a plane problem using the theory of elas-
ticity (3, 4).

The peculiarity of this functional basis is that this basis
is not orthogonal, and thus there exist two types of index
values, 77 and f . These magnitudes are different by rules
of conversion at transition on another basis. Contravariant
magnitudes denoted by upper index and covariant mag-
nitudes — lower index. Accordingly, g,,-} — two indexes
magnitude is twice covariant metric tensor and the inverse
matrix { gi].}fl = { g’ } is twice contravariant metric tensor.
Metric tensor provides a transition from covariant to con-
travariant components and vice versa:

fi=g, ) =g 1 5)

The scalar product in this case is the integral of mul-
tiplication functional factors. Therefore in mathematics
covariant and contravariant function magnitudes have an
identified name. Because the covariant magnitudes appear
in the decomposition by basis (fig. 1), they are called co-
efficients. Covariant magnitudes appear as a scalar product
of the basis elements:

[0 9)= (000 00N = [ £(x, ) 9.(»)dy

they are called — moments.
Therefore, reduced equations can be written in four
ways:
— Inmoments, if displacement and stresses in the moments;
— In coefficients, if all unknowns are written in coefficients;
— Two versions of combined record: displacement in the
moments, stresses in the coefficients or displacement in
coefficient, stresses in the moments.

h a J )
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After formulating the constructing equations, we need to
formulate the reduced boundary value and initial — boundary
value problem in index form.

The described technique can be applied to solve the
problem of thermal stresses in a rod of rectangular cross-sec-
tion (Fig. 2.), which occupies a three-dimensional region:
[0<x</]x[0<y<h]x[0<z<h].

Fig. 2. Beam of rectangular cross section

The problem of thermal stresses is considered within
limits of an important partition of the theory of elasticity
— thermoelasticity [5, 6]. In this problem we consider two
physical fields — thermal and mechanical.

Thermal field in solids is described by the thermal con-
ductivity equation. In the most general form, thermal field
depends not only on three spatial coordinates but also on
time coordinates. The corresponding problem in determining
of the component of thermal field is described by the equa-
tions of non-stationary thermal conductivity. Components
depend on the time coordinate. As a system of differential
equations in partial derivatives of the first order in the spatial
and time coordinates, these equations are written in the form:
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where T =T(x, y,z) — temperature function, ¢, q,, 4.
— components of the heat flux ¢(x, y,z), p — density of
the material, ¢ — specific heat, 4, — coefficient of thermal
conductivity. O —the quantity of heat generated by internal
heat sources.

To ensure unity of solution of the system (6) we need
to specify the initial and boundary conditions. The initial
conditions are in the form:

t=0,Tx,,2)=T/(x,y,2),
where:

T (x,y, z) — temperature distribution throughout the volume
of the body at the initial time.

The boundary conditions of the problem will be set as
conditions of convective heat transfer.

when x=0:
qx(o,y,Z,l‘) = aET(TvOC —TXO)—qu(O,y,Z,l),
when: x=/,

0.y, 2.0 =y (I, -T ) +q,c(y,z0.  (7)

The temperatures and heat flows of external environment
from the side of relevant part of boundary surface of beam
are marked as “C :
when: y=0,

q,(x,0,z,1)= —afr (T,(x,0,2z,0)—

_TyC(x505Za t)) _qyc(xaoazat)a

when: y—p ®)
q,(x.hy.z.0) = a)y (T,(x,h,,2.0) -
=T (x,h,,2,0) +q,0(x,h,,2,1),
when: z=0,
q. (x’ y,O,l) = —C(ST(TZ()C,)/,O,I) -
- TzC(x’ yaoat)) - qzc(xa yaoa t)a
when z=h_: 9)

q.(x,y,h,t) = al;(T.(x, y,h..1)—
=T o(x,3,h.,0) +q.c(x, y,h_,0).

In the next numerical calculations, such form of bound-
ary conditions allows to take into account the relevant part
of surface boundary conditions of first order o/, — o0 and
second order ¢, = 0.

Changing temperature of solid body in time practically
does not cause dynamic effects. Therefore, mechanical fields
(displacement, stress and strain fields ) are stationary and
are described by static equations.

These equations are written as equations in partial de-
rivatives of first order:

r=— 22— =_X, 10
Ox oy 0Oz (19)
or,, =_60'y _a‘l'y; _y (1n
Ox oy Oz ’
0
ot _ 0T, _80‘z 7 (12)
Ox oy 0Oz
o w A
ox  (A+2u) 7 (A+2u) oy (13)
3 A %+(3/1+2’u)aT(T—TO),
(A+2u) 0z (A+2u)
ov' ou”
=7 —— 14
o Do > (14)
ow' ou”
—=7_——. 15
w5 (15)

The equations can be separately considered:
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Ao Ao,
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Aow A, (r-T,),
u oz U
i@u l@v
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(A+2 )2 ﬂ(z 240) {1n
+ W +
A P o (T-T;),
Y7 oz
ow'  ov
18
fi ™ (8}/ azj (18)
where: " =pu-f.

Boundary conditions of stress-strain state
in general are written by the analogy of work
[71 (19)-(24).

For construction of the boundary condi-
tions (19)-(24) we write the sum of projec-
tions of all power factors that act on the
boundary contour, on corresponding axis. In
(Fig. 3.) on the plane x0y, the magnitudes
which act on area x =0 are shown.

The first index —signifies the number of
the axis which is perpendicular to the area.
The second index shows the direction of dis-
placement or stress.

when: x=0,

Fig. 3. Modeling of the boundary conditions
u,,v, — displacement of points of the exter-
nal environment,

u,v — horizontal and vertical displacement
of points of object,

q.» 4., — external load on object,

o., 7, — normal and tangential (shear)

X2 Xy
stresses along the contour inside the object,
k.., k., — spring stiffness.

1 0 kO 0 0
u, =0, 19
SR J1+(k° /1+(k0 J1+( (19
1 ky, .
v, =0, 20
./1+(k° J1+( J1+( o 1+(k°)2 20)
T 7, i ey B 1)
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where: = f£(0,y,2), f'=fy,z).
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By changing stiffness we can specify any
standard conditions of interaction of the ob-
ject with the external environment.

For equations (6)-(24) the procedure of
lowering dimension is performed by coordi-
nates y, z. At first — reduction by y . Basic

{¢i = ¢i (y)} )
i=1,...,n, where the following rules are tak-
en into account:

f(x’yazﬁt):f[(xazat)'¢i(y)a

functions  are  applied

(f (%, ,2,0), 9,(¥)) = If (X, 3,2,0)- ¢, (y)dy =

= fi(x,z,1);

(af(x,y, z,1)
ox

h

tof (x,y,z,t
0, (y)j = [ f(afc)coi (y)dy =
0
5 o
@z g0y =_ S0,
0
Where 1 is a factor of stress, then

of (x,y,2,1) o (x,3,2,0) dy=
(ﬁy !ay @, (y)dy

h

= [ 200,0) [ = [ (2,200 (n)dy =

= f(x: hy929 t)@i(hy) _f(x’os Z,t)(Di(O) -

h
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:¢i(y)j:

— [ 172,00, ()dy =

= f'(x,h,,2,0)8," - f(x,0,2,0)5, —
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When: f is a factor of temperature and
displacement (7',u,v,w), then:

(W,@(y)} JLERED g ()=
Yy 0 0y
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_ J (Wdv =
o o, (y)dy

ct— T o —

oM@ (W) f (x,z,0)dy =b;g"" f,,(x,2,0).
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The first equation of system (6) is multi-
plied as a scalar by {@ =¢/(y)} where
i=1,.,n, and than integrated by coordi-
nate y :
oT

= 0(x,,2,0))=0,0.(»)),

0oq
Lt
(« Py

0
qy +%_m
dy 0z

g, 8} g, (0,2,0) =874, (5,20~ )
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In the next step we perform the reduction
by z of equation (20):

0q,; . i C

(%4_51 .qy (x’Z’t)_§1[ .qy (X,Z,f)—

, aq.,
-b.g%q (x,z,1)+—==
i8¢,,(x,2,1) %

- pe

4. _
Oz
+ Qi(X,Z,t) = Oa ¢k(z))9

b8 q,,(x,2,t) + pc—-+

a . n i X i
g;u[&i 4, ()-8 g, (e
b8 g, o)+ 0. (o) -6% g |- (26)
s o
b,g"q.,(x,t)-pc 8tk +0,(x,1)=0,
-4,
0
Here [87 ¢, ~37 ¢, ]=| |,
0
L 9% |
=g
0
(8% q.f =0t ]=| ¢ |,
0
q.;"

n — number of lines along the axis y, m-
number of lines along the axis z .

Indexes i, j, a, f, y - are related to reduc-
tion by coordinate y; indexes k, p,s, @, ¢ -

reduction by coordinate z.
Taking into account the boundary condi-

tions (8)-(9):
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Taking into account the boundary condi-
tions (27)-(28) in equation (20):

aqxl ia ic ia
( axk I:g Ta gkgTCy +g 'quak:|_
- jigjaqyak +
':gkg : Tazie - giaTCzak + gkg ’ quis:I -
i or,
- pkgp qus pca_ + sz = 0 (29)

Similarly, the reduction of remaining
equations of system (6) is done:

oT,
30
xzk ax ( )
ylk ﬂ' b g/aT (‘x t) (31)
zzk - _ﬂ'Tbkp péz—;s (‘x’ t) (32)

Substituting (30)-(32) in (29), equation
(33) is formed:
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J'l; ayT' yC-l-c qu-];
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N f +
0 0 0
n- h, " o
Tyk_ | &yr - Tka qyc-k
Tz;l aST ]—;C;l qzc;‘l-
0 0 0
T S T
0 0 0
T e Tt | | 4! ]
_ L
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0
_q}7Cf11;_
_ 0
qzCi-
0
& &
=7C.}, =q.0" (%)
0
-m
__qzCi~ i
_ﬂT + I:gla Ta gkgTCyig + gia : quak:| +
+ﬂ7'bjig‘]a aﬁgﬁyTyk +
|:ng : Taz[g - giaTCzak + gk“: : quig:| +

. oT;
+j7b &" s¢g¢ T, —pc—— o . +0,=0 (33)

The reduced initial conditions will look
like 7, (x,0) = T3, (x).

The next step is the reduction of equations
of system (10)-(14) In this system, the pro-
cess of reduction expressions are substituted
for 0,,0.,7,. (16)-(18), using the above

z? Vyz
mentioned operations:
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Gxik -
dx  (A+2up) (A+2up)

duw _ A bijgjav*ak _Lb PSy +W“T(Zk ~T,.), (34)
Y7,

=74 —b,g U ak, (35)

&
g

dw*ik *
=7 . —b g”u, 36
dx xzik kpg ( )

1

do, , ' N [ . '
k Jja ps n- 1- i m- k 1- k
= _b ’l‘g Txyak +bpkg szis - 51‘ Txy4k _ai Txy,k - 5.k Tx}’i- _é"eryln _Xik’ (37)

dx ’
Txylk — /1 b'i jao-xak +wb7g']abaﬂgﬁyv xpk +
dc  A+2u A+2u
g 5 T 20A+24),
+m b.g’ ]'[bkpgp ]W » _ﬁbﬁé’j ot (Toy =Ty ) +
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S 4(ﬂ“+:u) S ge_ ¥ 22’ s ja | *
bpkgp O +Wb'nkgp bV¢g W xie + Mu[b”kgp ] [bi/gj ]V as —

ayb 8" (T, ~T, ) +|b,g" b, g” W as +b,27b, 8" w s - (39)

ne_ i 1-_ i m- __ -k 1- _ -k
_[ -i Tyz_k_é‘-iryz_k]_[é‘-k 02;‘. _akazzﬂ]_zik
The reduced boundary conditions of stress-strain state will look like:
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H 0 kxy %0 y2 0 kxy ¥ _
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lLl Z_O z w4+ ll’l quik + Xz Wc;;{ — O’
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!

H k., ! k :
i

0
0

*
u, +

- G)lcik - “ /N = ucz’lk =0, (40)
JI (kL) I+ (kL) JI+ (kL) JI+ (kL)
1

_ H o k, e H g+ kixy V=0
xyik ik xyik cik 4
k) (k) S (k) (KLY
1

k .
H T - +——=—w =0.

kl i /Ll !
. 22 w., + )
NIRRT ¢+@j’k¢HmQﬂm JI+ (KLY

The next step — the problem numerically is simulated CONCLUSIONS
using the method of discrete orthogonalization by S.K.Ho-
dunov [8]. Differential equations in partial derivatives are The suggested modification of the method of lines sig-
solved using the method of Runge-Kutta-Merson. This prob-  nificantly increases the accuracy of calculation. The problem
lem is programmed by the Fortran programming language. of setting boundary function is solved and this allows the
Depending on the geometry and initial-boundary conditions;  solution of problem of dynamics and thermoelasticity.
temperature, displacement and stress are determined at cer-
tain points of the construction.
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[IPYMEHEHUE OBOBIIEHHOI'O METO/JIA [IPSIMBIX
K 3AJTAUAM TEPMOVIIPYTOCTH TOJICTBIX IJIUT.
COOBIIEHUE 1. IIOCTPOEHUE PA3PEIIAIOIINX
VPABHEHUMN

AHHOTanus. ABTOpaMH JaHHOHW paOOTHI MPEIOKEH HOBBIN
BapHAHT TOHMKEHUS Pa3MEPHOCTH METOIOM MPSIMBIX, YTO Cy-
IIECTBEHHO PACIIUPIIIO €r0 BO3MOKHOCTU. OOOOIIEHHBINH METO/T
MIPSIMBIX IPUMEHUM JUIS IUTHT TIEPEMEHHON TOJIIIMHBI, a TAKXKE
B 3aja4ax AuHaMHUKHA. OCHOBHAS HJEs COCTOUT B MOHIKEHHU
Pa3MepHOCTHU MO MPOCTPAHCTBEHHON KOOPIMHATE C MOMOIIBIO
MIPOEKIIOHHOTO METO/IA (K MPOEKI[IOHHOMY METOY OTHOCUTCS
metox byOnosa — 'anepkuna, 0606mennsii I. U. IlerpoBeiM
[4]). B paboTe MeTOqMKA MOHMKEHHS PA3MEPHOCTU HCIIOIB3Y-
eTcsl JUISl PEIyKIIMU ypaBHEHUH TEPMOYTIPYTOCTH.

KuroueBbie cjioBa: MeTo[ IpsMBIX, MeTox byOHoBa-I"anépku-
Ha-IleTpoBa, TepMOYTIPYrOCTh, TOICTHIC INIACTHHBI, CTPOUTEIb-
Hasi MEXaHHKa.



