Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 84 | 4 |
Tytuł artykułu

Effect of geographic range discontinuity on taxonomic differentiation of Abies cilicica

Treść / Zawartość
Warianty tytułu
Języki publikacji
Three populations of Abies cilicica subsp. isaurica and four of A. cilicica subsp. cilicica were analyzed using 35 morphological and anatomical needle characters with the implementation of multivariate statistical methods to verify the differences between subspecies. Moreover, the possible geographic differentiation of A. cilicica subsp. cilicica populations from the East Taurus and Lebanon Mountains was examined. Abies cilicica subsp. isaurica has been distinguished from A. cilicica subsp. cilicica by its glabrous young shoots and resinous buds. We detected that needles of A. cilicica subsp. isaurica are longer, broader and thicker, with a higher number of stomata rows, and larger cells of the epidermis, hypodermis and endodermis than A. cilicica subsp. cilicica. Additionally, A. cilicica subsp. isaurica needles have frequently rounded to obtuse-acute apex and resinous canals positioned more centrally inside the mesophyll than needles of A. cilicica subsp. cilicica. This indicates that a set of most of the tested needle characters can be used to distinguish the subspecies; however, any of characters enable that when used separately. Morphological and anatomical distinctiveness between these two taxa justify their recognition at the subspecies rank. Additionally, the populations of A. cilicica subsp. cilicica from the East Taurus and Lebanon are morphologically different. This geographic differentiation of populations is congruent with results provided by genetic analyses of nuclear microsatellites markers (nSSR).
Opis fizyczny
  • Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kornik, Poland
  • Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kornik, Poland
  • Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kornik, Poland
  • Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kornik, Poland
  • Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kornik, Poland
  • Department of Forest Botany, Faculty of Forestry, Kahramanmaras Sutcu Imam University, 46100 Kahramanmaras, Turkey
  • Laboratoire Caracterisation Genomique des Plantes, Faculte des Sciences, Universite Saint-Joseph, Campus Sciences et Technologies, Mar Roukos, Mkalles, BP: 1514 Riad el Solh, Beirut 1107 2050, Lebanon
  • Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kornik, Poland
  • 1.Willis K, McElwain J. The evolution of plants. Oxford: Oxford University Press; 2002.
  • 2.Rögl F. Mediterranean and Paratethys. Facts and hypotheses of an Oligocene to Miocene paleogeography (short overview). Geol Carpath. 1999;50(4):339-349.
  • 3.Meulenkamp JE, Sissingh W. Tertiary palaeogeography and tec-tonostratigraphic evolution of the Northern and Southern Peri-Tethys platforms and the intermediate domains of the African-Eurasian convergent plate boundary zone. Palaeogeogr Palaeoclimatol Palaeoecol. 2003;196(1-2):209-228. S0031-0182(03)00319-5
  • 4.Popov SV, Shcherba IG, Ilyina LB, Nevesskaya LA, Paramonova NP, Khondkarian SO, et al. Late Miocene to Pliocene palaeogeography of the Paratethys and its relation to the Mediterranean. PalaeogeogrPalaeoclimatol Palaeoecol. 2006;238(1–4):91–106.
  • 5. Ivanov D, Utescher T, Mosbrugger V, Syabryaj S, Djordjević- Milutinović D, Molchanoff S. Miocene vegetation and climate dynamicsin Eastern and Central Paratethys (Southeastern Europe).Palaeogeogr Palaeoclimatol Palaeoecol. 2011;304(3–4):262–275.
  • 6. Krijgsman W, Hilgen FJ, Raffi I, Sierro FJ, Wilson DS. Chronology, causes and progression of the Messinian salinity crisis. Nature.1999;400(6745):652–655.
  • 7. Hewitt GM. Genetic consequences of climatic oscillations in the Quaternary. Philos Trans R Soc Lond B Biol Sci. 2004;359(1442):183–195.
  • 8. Thompson JD. Plant evolution in the Mediterranean. Oxford: Oxford University Press; 2005.
  • 9. Hughes PD, Woodward JC, Gibbard PL. Late Pleistocene glaciers and climate in the Mediterranean. Glob Planet Change. 2006;50(1–2):83–98.
  • 10. Rivas-Martínez S, Penas A, Díaz TE. Bioclimatic map of Europe – thermoclimatic belts [Internet]. 2004 [cited 2015 Dec 17]; Availablefrom:
  • 11. Linares JC. Biogeography and evolution of Abies (Pinaceae) in the Mediterranean Basin: the roles of long-term climatic changeand glacial refugia. J Biogeogr. 2011;38(4):619–630.
  • 12. Palamarev E. Paleobotanical evidences of the Tertiary history and origin of the Mediterranean sclerophyll dendroflora. Plant Syst Evol.1989;162(1–4):93–107.
  • 13. Sękiewicz K, Dering M, Sękiewicz M, Boratyńska K, Iszkuło G, Litkowiec M, et al. Effect of geographic range discontinuity on speciesdifferentiation – East-Mediterranean Abies cilicica: a case study.Tree Genet Genomes. 2015;11(1):810.
  • 14. Leroy SAG, Arpe K. Glacial refugia for summer-green trees in Europe and south-west Asia as proposed by ECHAM3 time-slice atmospheric model simulations. J Biogeogr. 2007;34(12):2115–2128.
  • 15. Collins PM, Davis BAS, Kaplan JO. The mid-Holocene vegetation of the Mediterranean region and Southern Europe, and comparisonwith the present day. J Biogeogr. 2012;39(10):1848–1861.
  • 16. Roberts N, Reed JM, Leng MJ, Kuzucuoğlu C, Fontugne M, Bertaux , et al. The tempo of Holocene climatic change in the eastern Mediterranean region: new high-resolution crater-lake sediment data from central Turkey. Holocene. 2001;11(6):721–736. http://dx.doi. org/10.1191/09596830195744
  • 17. Awad L, Fady B, Khater C, Roig A, Cheddadi R. Genetic structure and diversity of the endangered fir tree of Lebanon (Abies cilicica Carr.):implications for conservation. PLoS ONE. 2014;9(2):e90086.
  • 18. Talhouk SN, Zurayk R, Khuri S. Conservation of the coniferous forests of Lebanon: past, present and future prospects. Oryx. 2001;35(3):206–215.
  • 19. Talhouk S, Zurayk R, Khuri S. Conifer conservation in Lebanon. Acta Hortic. 2003;615:411–414.
  • 20. Kaya Z, Raynal DJ. Biodiversity and conservation of Turkish forests. Biol Conserv. 2001;97(2):131–141.
  • 21. Aussenac G. Ecology and ecophysiology of circum-Mediterranean firs in the context of climate change. Ann For Sci. 2002;59(8):823–832.
  • 22. Bozkuş F. The natural distribution and silvicultural characteristics of Abies cilicica Carr. in Turkey [PhD thesis]. Istanbul: Forest Faculty of the Istanbul University; 1988.
  • 23.Gardner M, Knees S. Abies cilicica [Internet]. The IUCN Red List of Threatened Species 2014-3. 2013; Available from: http://www.
  • 24.Médail F, Diadema K. Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J Biogeogr. 2009;36:1333-1345. http://
  • 25.Browicz K. Chorology of trees and shrubs in south-west Asia and adjacent regions. Warsaw: Państwowe Wydawnictwo Naukowe; 1982. (vol 1).
  • 26.Cullen J, Coode MJE. Materials for a flora of Turkey: X. Notes Roy Bot Gard Edinburgh. 1965;26(2):165-167.
  • 27.Coode MJE, Cullen J. Abies Miller. In: Davies P, Cullen J, Coode MJE, editors. Flora of Turkey and the East Aegean Islands. Edinburgh: Edinburgh University Press; 1965. p. 67-70. (vol 1).
  • 28.Farjon A. A handbook of the world's conifers. Leiden: Brill; 2010. (vol 1).
  • 29.Douaihy B, Sobierajska K, Jasińska AK, Boratyńska K, Ok T, Romo A, et al. Morphological versus molecular markers to describe variability in Juniperus excelsa subsp. excelsa (Cupressaceae). AoB Plants. 2012;2012:plr013.
  • 30.Jasińska AK, Boratyńska K, Sobierajska K, Romo A, Ok T, Kharat MBD, et al. Relationships among Cedrus libani, C. brevifolia and C. atlantica as revealed by the morphological and anatomical needle characters. Plant Syst Evol. 2013;299:35-48. s00606-012-0700-y
  • 31.Bagci E, Babaę MT. A morphometric and chemosystematic study on the Abies Miller (Fir) species in Turkey. Acta Bot Gallica. 2003;150(3):355-367. 0516002
  • 32.Yaltirik F. Dendroloji I Ders Kitabi Gymnospermae (Aęik Tohumlular). Istanbul: Istanbul Üniversitesi, Orman Fakültesi Yayinlari; 1993.
  • 33.Kavgaci A, Baęaran S, Baęaran MA. Cedar forest communities in Western Antalya (Taurus Mountains, Turkey). Plant Biosyst. 2010;144(2):271-287.
  • 34.Sękiewicz K, Sękiewicz M, Jasińska AK, Boratyńska K, Iszkuło G, Romo A, et al. Morphological diversity and structure of West Mediterranean Abies species. Plant Biosyst. 2013;147(1):125-134. http://
  • 35.Sokal RR, Rohlf J. Biometry: principles and practice of statistics in biological research. 8th ed. San Francisco, CA: Freeman W.H. and Company; 1997.
  • 36.Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967;27(2):209-220.
  • 37.Hood GM. PopTools version 3.2.5 [Internet]. 2010 [cited 2015 Dec 17]; Available from:
  • 38.Panetsos CP. Monograph of Abies cephalonica Loudon. Zagreb: Academia Scientiarum et Artium Slavorum Meridionalium; 1975. (Annales Forestales; vol 7/1).
  • 39.Panetsos KP. Variation in the position of resin canals in the needles of Abies species and provenances. Ann Sci For. 1992;49:253-260. http://
  • 40.Gaussen H. Les gymnospermes actuelles et fossiles. Toulouse: Labo-ratoire Forestier de Toulouse; 1964. (Travaux du Laboratoire Forestier de Toulouse; vol 7).
  • 41.Liu TS. A monograph of the genus Abies. Taipei: Department of Forestry, College of Agriculture, National Taiwan University; 1971.
  • 42.Schütt P. Tannenarten Europas und Kleinasiens. Basel: Birkhäuser; 1991.
  • 43.Kovar-Eder J, Kvaček Z, Martinetto E, Roiron P. Late Miocene to Early Pliocene vegetation of Southern Europe (7-4 Ma) as reflected in the megafossil plant record. Palaeogeogr Palaeoclimatol Palaeoecol. 2006;238(1-4):321-339.
  • 44.Farjon A, Rushforth KD. A classification of Abies Miller (Pinaceae). Notes Roy Bot Gard Edinburgh. 1989;46(1):59-79.
  • 45.Debreczy Z, Rácz I. Conifers around the world. Budapest: Dendro-Press; 2011. (vol 1).
  • 46.Elenga H, Peyron O, Bonnefille R, Jolly D, Cheddadi R, Guiot J, et al. Pollen-based biome reconstruction for Southern Europe and Africa 18 000 yr BP. J Biogeogr. 2000;27(3):621-634. http://dx.doi. org/10.1046/j.1365-2699.2000.00430.x
  • 47.Fady B, Lefevre F, Vendramin GG, Ambert A, Régnier C, Bariteau M. Genetic consequences of past climate and human impact on eastern Mediterranean Cedrus libani forests. Implications for their conservation. Conserv Genet. 2008;9(1):85-95. s10592-007-9310-6
  • 48.Fady-Welterlen B. Is there really more biodiversity in Mediterranean forest ecosystems? Taxon. 2005;54(4):905-910. http://dx.doi. org/10.2307/25065477
  • 49.Fady B, Conord C. Macroecological patterns of species and genetic diversity in vascular plants of the Mediterranean basin. Divers Distrib. 2010;16(1):53-64.
  • 50.Schluter D. Ecology and the origin of species. Trends Ecol Evol. 2001;16(7):372-380. S0169-5347(01)02198-X
  • 51.Abbott RJ, Ritchie MG, Hollingsworth PM. Introduction. Speciation in plants and animals: pattern and process. Philos Trans R Soc Lond B Biol Sci. 2008;363(1506):2965-2969. rstb.2008.0096
  • 52.Sobierajska K. Pozycja taksonomiczna i zróżnicowanie geograficzne Juniperus drupacea Labill. (Cupressaceae) [PhD thesis]. Kórnik: Institute of Dendrology of the Polish Academy of Sciences; 2012.
  • 53.Zohary M. Geobotanical foundations of the Middle East. Stuttgart: Gustav Fischer Verlag - Swets & Zeitlinger; 1973.
  • 54.Bou Dagher-Kharrat MB, Mariette S, Lefevre F, Fady B, March GG, Plomion C, et al. Geographical diversity and genetic relationships among Cedrus species estimated by AFLP. Tree Genet Genomes. 2007;3(3):275-285.
  • 55.Douaihy B, Vendramin GG, Boratyński A, Machon N, Bou Dagher-Kharrat M. High genetic diversity with moderate differentiation in Juniperus excelsa from Lebanon and the Eastern Mediterranean region. AoB Plants. 2011;2011:plr003. aobpla/plr003
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.