PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2013 | 25 | 2 |

Tytuł artykułu

Prooxidative and antioxidative properties of cucumber (Cucumis sativus L.) callus in vitro and young in vitro plantlets in response to copper ions

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The effects of different concentrations of copper ions (Cu2+ in the form of CuS04 x 5H20) on in vivo cucumber (Cucumis sativus L. ‘Edinstvo’) seedlings as well as on in vitro hypocotyl-derived callus were considered. Callus induction from hypocotyls was more prolific than from roots or cotyledons. Thus, callus obtained from hypocotyls of 7-day-old cucumber plants was cultured for 5 weeks on Murashige and Skoog medium containing 4 mg dm'3 2,4-D + 1 mg dm'3 BA supplemented with 0.01 mM, 0.1 mM or 1.0 mM of Cu2+. Biochemical indices related to oxidative stress were assessed. Cu2+ at 0.01 mM stimulated callus induction but 1.0 mM Cu2+negatively affected callus formation and growth. LPO intensity was significantly lower than the control at all concentrations of Cu2+ but significantly higher than the control in plants exposed to 0.01 or 0.1 mM Cu2+. A similar trend was observed for the generation of the superoxide radical in both callus and plantlets. Superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APOX) activity increased in both callus and plantlets, but the level of increase in these antioxidant enzyme systems depended on the Cu2+ concentration. Cu2+ ions had a stronger (i.e., more negative) influence on oxidative stress in cucumber seedlings than on cucumber callus.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

25

Numer

2

Opis fizyczny

p.141-151,fig.,ref.

Twórcy

  • Department of Botany and Pant Physiology, Mordovian State Uniwersity, Bolshevistskaja 68, Saransk 430005, Russia
  • Department of Botany and Pant Physiology, Mordovian State Uniwersity, Bolshevistskaja 68, Saransk 430005, Russia
  • P.O. Box 7, Miki-Cho post office, Ikenobe 3011-2, Kagawa-Ken 761-0799, Japan

Bibliografia

  • ANDRADE S.A.L., GRATAO P.L., AZEVEDO R.A., SILVEIRA A.P.D., SCHIAVINATO M.A., MAZZAFERA P., 2010. Biochemical and physiological changes in jack bean under mycorrhizal symbiosis growing in soil with increasing Cu concentrations. Environ. Exp. Bot. 68: 198-207.
  • APEL K., HIRT H., 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann. Rev. Plant Biol. 55: 373-399.
  • AUH C.K., SCANDALIOS J.G., 1997. Spatial and temporal responses of the maize catalases to low temperature. Physiol. Plant. 101: 149-156.
  • BARTOLI C.G., CASALONGUE C.A., SIMONTACCHI M., MARQUEZ-GARCIA M., FOYER C.H., 2013. Interactions between redox signalling pathways in the control of growth and cross tolerance to stress. Env. Exp. Bot. 94: 73-88.
  • BIQAKQI E., MEMON A.R., 2005. An efficient and rapid in vitro regeneration system for metal resistant cotton. Biol. Plant. 49:415-417.
  • BURZYŃSKI M., ŻUREK A., 2007. Effects of copper and cadmium on photosynthesis in cucumber cotyledons. Photosynthetica 45: 239-244.
  • CIRÍACO DA SILVA E., NOGUEIRA R.J.M.C., ALMEIDA DA SILVA M., BANDEIRA DE ALBUQUERQUE M., 2011. Drought stress and plant nutrition. In: Plant nutrition and abiotic stress tolerance III. Plant Stress 5 (Special Issue 1). N.A. Anjum and F. Lopez-Lauri (eds), Global Science Books: 32-41.
  • DRĄŻKIEWICZ M., BASZYŃSKI T., 2008. Calcium protection of PS2 complex of Phaseolus coccineus from cadmium toxicity: in vitro study. Environ. Exp. Bot. 64: 8-14.
  • ELOBEID M., POLLE A., 2010. Response of grey poplar (Populus x ccmescens) to copper stress. In: Plant nutrition and abiotic stress tolerance I. Plant Stress 4 (Special Issue 1). N.A. Anjum and F. Lopez-Lauri (eds), Global Science Books: 82-86.
  • FARIDUDDIN Q., YUSUF M., HAYAT S., AHMAD A., 2009. Effect of 28-homobrassinolide on antioxidant capacity and photosynthesis in Brassica júncea plants exposed to different levels of copper. Environ. Exp. Bot. 66: 418-424.
  • FORNAZIER R.F., FERREIRA R.R., PEREIRA G.J.G., MOLINA S.M.G., SMITH R.J., LEA P.J., AZEVEDO R.A., 2002. Cadmium stress in sugar cane callus cultures. Effect on antioxidant enzymes. Plant Cell Tissue Organ Cult. 71: 125-131.
  • GALLEGO S., BENAVIDES M., TOMARO M., 2002. Involvement of an antioxidant defense system in the adaptive response to heavy metal ions in Helianthus annum L. cells. Plant Growth Regul. 36: 267-273.
  • GALLEGO S.M., KOGAN M.J., AZPILICUETA C.E., PEÑA C., TOMARO M.L., 2005. Glutathione-mediated antioxidative mechanisms in sunflower (Helianthus annum L.) cells in response to cadmium stress. Plant Growth Regul. 46: 267-276.
  • GATTI E., 2008. Micropropagation of Ailanthus altissima and in vitro heavy metal tolerance. Biol. Plant. 52: 146-148.
  • GORI R, SCHIFF S., SANTANDREA G., BENNICI A., 1998. Response of in vitro cultures of Nicotiana tabacum L. to copper stress and selection of plants from Cu- tolerant callus. Plant Cell Tissue Organ Cult. 53: 161- 169.
  • HOSSAIN M.A., PIYATIDA R, TEIXEIRA DA SILVA J.A., FUJITA M., 2012. Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of GSH in reactive oxygen species and methylglyoxal detoxifications and heavy metal chelation. J. Bot. 2012, ID 872875.
  • JACK E.M., ANATASOVA S., VERKLEIJ J.A.C., 2005. Callus induction and plant regeneration in the metallophyte Silene vulgaris (Caryophyllaceae). Plant Cell Tissue Organ Cult. 80: 25-31.
  • KABAŁA K., JANICKA-RUSSAK M., KŁOBUS G., 2010. Different responses of tonoplast proton pumps in cucumber roots to cadmium and copper. J. Plant Physiol. 167: 1328-1335.
  • KOJO S., 2012. Oxygen is the key factor associated with the difference between in vivo and in vitro effects of antioxidants. Proc. Nat. Acad. Sci. USA 109(30), E2028.
  • LANDBERG T., JENSEN P., GREGER M., 2011. Strategies of cadmium and zinc resistance in willow by regulation of net accumulation. Biol. Plant. 55: 133-140.
  • LUKATKIN A.S., 2002a. Contribution of oxidative stress to the development of cold-induced damage to leaves of chilling-sensitive plants. 1. Reactive oxygen species formation during plant chilling. Russ. J. Plant Physiol. 49: 622-627.
  • LUKATKIN A.S., 2002b. Contribution of oxidative stress to the development of cold-induced damage to leaves of chilling-sensitive plants. 2. The activity of antioxidant enzymes during plant chilling. Russ. J. Plant Physiol. 49: 782-788.
  • LUKATKIN A.S., KISTENJOVA T.E., TEIXEIRA DA SILVA J.A., 2010. Oxidative stress in cucumber (Cucumis sativus L.) leaf cells. Short-term influence of heavy metals (lead and copper). Plant Stress. 4: 44-49.
  • MADEJON R, RAMIREZ-BENITEZ J.E., CORRALES I., BARCELO J., POSCHENRIEDER C., 2009. Copper-induced oxidative damage and enhanced antioxidant defenses in the root apex of maize cultivars differing in Cu tolerance. Environ. Exp. Bot. 67:415-420.
  • MANEVA S., BOGATZEVSKA N., MITEVA E., 2009. Excess copper in soil as a factor affecting bacterial spots caused by Xanthomonas vesicatoria in tomato plants; bio-interaction between two stress factors and their influence on plants. Acta Physiol. Plant. 31: 125-131.
  • MARSCHNER H., 1995. Mineral nutrition of higher plants. Academic Press Inc. Ltd, London.
  • MATAMOROS M.A., Loscos J., DIETZ K.-J., APARICIO-TEJO P.M., BECANA M., 2010. Function of antioxidant enzymes and metabolites during maturation of pea fruits. J. Exp. Bot. 61: 87-97.
  • MOURATO M.P., MARTINS L.L., CAMPOS-ANDRADE M.P., 2009. Physiological responses of Lupinus luteus to different copper concentrations. Biol. Plant. 53: 105- 111..
  • MURASHIGE T., SKOOG F.A., 1962. Revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473-497.
  • MUSCHITZ A., FAUGERON C., MORVAN H., 2009. Response of cultured tomato cells subjected to excess zink, role of cell wall in zink compartmentation. Acta Physiol. Plant. 31: 1197-1204.
  • NEHNEVAJOVA E., HERZIG R., ERISMANN K.-H., SCHWITZGUEBEL J.-P., 2007. In vitro breeding of Brassica juncea L. to enhance metal accumulation and extraction properties. Plant Cell Rep. 26: 429- 437.
  • NIKNAM V., MERATAN A. A., GHAFFARI S .M., 2011. The effect of salt stress on lipid peroxidation and antioxidative enzymes in callus of two Acanthophyllum species. In Vitro Cell Dev. Biol. Plant 47: 297-308.
  • PANDA S.K., 2008. Impact of copper on reactive oxygen species, lipid peroxidation and antioxidants in Lemna minor. Biol. Plant. 52: 561-564.
  • RAEYMAEKERS T., POTTERS G., ASARD H., GUISEZ Y., HOREMANS N., 2003. Copper-mediated oxidative burst in Nicotiana tabacum L. cv. Bright Yellow 2 cell suspension cultures. Protoplasma 221: 93-100.
  • RAI M.J., KALIA R.K., SINGH R., GANGOLA M.P., DHAWAN A.K., 2011. Developing stress-tolerant plants through in vitro selection - An overview of the recent progress. Environ. Exp. Bot. 71: 89-98.
  • ROUT G.R., SAMANTARAY S., DAS R, 1999. Chromium, nickel and zinc tolerance in Leucaena leucocephalla (K8). Silvae Genet. 48: 151-157.
  • SAMANTARAY S., ROUT G.R., DAS P., 1999. Chromium and nickel tolerance of Trema orientalis (Blume) L. in tissue culture. Acta Physiol. Plant. 21: 27-35.
  • SHANKAR V., THEKKEETTIL V., SHARMA G., AGRAWAL V., 2012. Alleviation of heavy metal stress in Spilanthe scalva L. (antimalarial herb) by exogenous application of glutathione. In Vitro Cell Dev. Biol. Plant 48: 113-119.
  • SHAW B., PRASAD M.V., JHA V.K., SAHU B.B., 2006. Detoxification/defense mechanisms in metal- exposed plants. In: Trace elements in environment, biogeochemistry, biotechnology, and bioremediation. M.N.V. Prasad, K.S. Saiwan and R. Naidu (eds), CRC Press, Taylor and Francis Group, Boca Raton, pp. 291-324.
  • SUGIJANTO K., INDRAYANTO G., CHOLIES Z.M., 2002. The uptake of copper ions by cell suspension cultures of Agave amaniensis, and its effect on the growth, amino and hecogenin content. Plant Cell Tissue Organ Cult. 68: 287-292.
  • VASUDEVAN A., SELVARAJ N., GANAPATHI A., KASTHURIRENGAN S., RAMESH ANBAZHAGAN V., MANICKAVASAGAM M., CHOI C.W., 2008. Leucine and spermidine enhance shoot differentiation in cucumber (Cucumis sativus L.). In Vitro Cell Dev. Biol. Plant 44: 300-306.
  • ZACCHINI M., IORI V., SCARASCIA MUGNOZZA G., PIETRINI F., MASSACCI A., 2011. Cadmium accumulation and tolerance in Populus nigra and Salix alba. Biol. Plant. 55: 383-386.
  • ZHANG Z-K., LI H., ZHANG Y., HUANG Z-J., CHEN K., LIU S-Q., 2013. Grafting enhances copper tolerance of cucumber through regulating nutrient uptake and antioxidative system. Agric. Sci. in China 9: 1758- 1770.
  • ZHAO X., NISHIMURA Y., FUKUMOTO Y., LI J., 2011. Effect of high temperature on active oxygen species, senescence and photosynthetic properties in cucumber leaves. Environ. Exp. Bot. 70: 212-216.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-32af6ec3-94cd-4dee-abf0-c7cd0b686e9b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.