PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 18 | 2 |

Tytuł artykułu

PTPN4 negatively regulates CRKI in human cell lines

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
PTPN4 is a widely expressed non-receptor protein tyrosine phosphatase. Although its overexpression inhibits cell growth, the proteins with which it interacts to regulate cell growth are unknown. In this study, we identified CrkI as a PTPN4-interacting protein using a yeast two-hybrid, and confirmed this interaction using in vitro GST pull-down and co-immunoprecipitation and co-localization assays. We further determined the interactional regions as the SH3 domain of CrkI and the proline-rich region between amino acids 462 and 468 of PTPN4. Notably, overexpression of PTPN4 inhibits CrkI-mediated proliferation and wound healing of HEK293T cells, while knockdown of PTPN4 by siRNA in Hep3B cells enhances CrkI-mediated cell growth and motility. Moreover, our data show that ectopic expression of PTPN4 reduces the phosphorylation level of CrkI in HEK293T cells. These findings suggest that PTPN4 negatively regulates cell proliferation and motility through dephosphorylation of CrkI.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

18

Numer

2

Opis fizyczny

p.297-314,fig.,ref.

Twórcy

autor
  • State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life sciences, Fudan University, 220 Handan Rd., Shanghai 200433, China
autor
autor
autor
autor
autor

Bibliografia

  • 1. Hubbard, S.R. and Till, J.H. Protein tyrosine kinase structure and function. Annu. Rev. Biochem. 69 (2000) 373-398.
  • 2. Zhang, Z.Y. Protein tyrosine phosphatases: structure and function, substrate specificity, and inhibitor development. Annu. Rev. Pharmacol. Toxicol. 42 (2002) 209-234.
  • 3. Rudolph, J. Inhibiting transient protein-protein interactions: lessons from the Cdc25 protein tyrosine phosphatases. Nat. Rev. Cancer 7 (2007) 202-211.
  • 4. Vang, T., Miletic, A.V., Arimura, Y., Tautz, L., Rickert, R.C. and Mustelin, T. Protein tyrosine phosphatases in autoimmunity. Annu. Rev. Immunol. 26 (2008) 29-55.
  • 5. Alonso, A., Sasin, J., Bottini, N., Friedberg, I., Osterman, A., Godzik, A., Hunter, T., Dixon, J. and Mustelin, T. Protein tyrosine phosphatases in the human genome. Cell 117 (2004) 699-711.
  • 6. Gu, M.X., York, J.D., Warshawsky, I. and Majerus, P.W. Identification, cloning, and expression of a cytosolic megakaryocyte protein-tyrosinephosphatase with sequence homology to cytoskeletal protein 4.1. Proc. Natl. Acad. Sci. USA 88 (1991) 5867-5871.
  • 7. Gu, M. and Majerus, P.W. The properties of the protein tyrosine phosphatase PTPMEG. J. Biol. Chem. 271 (1996) 27751-27759.
  • 8. Gu, M., Meng, K. and Majerus, P.W. The effect of overexpression of the protein tyrosine phosphatase PTPMEG on cell growth and on colony formation in soft agar in COS-7 cells. Proc. Natl. Acad. Sci. USA 93 (1996) 12980-12985.
  • 9. Prehaud, C., Wolff, N., Terrien, E., Lafage, M., Megret, F., Babault, N., Cordier, F., Tan, G.S., Maitrepierre, E., Menager, P., Chopy, D., Hoos, S., England, P., Delepierre, M., Schnell, M.J., Buc, H. and Lafon, M. Attenuation of rabies virulence: takeover by the cytoplasmic domain of its envelope protein. Sci. Signal. 3 (2010) ra5.
  • 10. Park, K.W., Lee, E.J., Lee, S., Lee, J.E., Choi, E., Kim, B.J., Hwang, R., Park, K.A. and Baik, J. Molecular cloning and characterization of a protein tyrosine phosphatase enriched in testis, a putative murine homologue of human PTPMEG. Gene 257 (2000) 45-55.
  • 11. Whited, J.L., Robichaux, M.B., Yang, J.C. and Garrity, P.A. PTPMEG is required for the proper establishment and maintenance of axon projections in the central brain of Drosophila. Development 134 (2007) 43-53.
  • 12. Hironaka, K., Umemori, H., Tezuka, T., Mishina, M. and Yamamoto, T. The protein-tyrosine phosphatase PTPMEG interacts with glutamate receptor delta 2 and epsilon subunits. J. Biol. Chem. 275 (2000) 16167-16173.
  • 13. Young, J.A., Becker, A.M., Medeiros, J.J., Shapiro, V.S., Wang, A., Farrar, J.D., Quill, T.A., Hooft van Huijsduijnen, R. and van Oers, N.S. The protein tyrosine phosphatase PTPN4/PTP-MEG1, an enzyme capable of dephosphorylating the TCR ITAMs and regulating NF-kappaB, is dispensable for T cell development and/or T cell effector functions. Mol. Immunol. 45 (2008) 3756-3766.
  • 14. van der Geer, P., Hunter, T. and Lindberg, R.A. Receptor protein-tyrosine kinases and their signal transduction pathways. Annu. Rev. Cell Biol. 10 (1994) 251-337.
  • 15. Watanabe, T., Tsuda, M., Makino, Y., Konstantinou, T., Nishihara, H., Majima, T., Minami, A., Feller, S.M. and Tanaka, S. Crk adaptor proteininduced phosphorylation of Gab1 on tyrosine 307 via Src is important for organization of focal adhesions and enhanced cell migration. Cell Res. 19 (2009) 638-650.
  • 16. Rodrigues, S.P., Fathers, K.E., Chan, G., Zuo, D., Halwani, F., Meterissian, S. and Park, M. CrkI and CrkII function as key signaling integrators for migration and invasion of cancer cells. Mol. Cancer Res. 3 (2005) 183-194.
  • 17. Sakai, R., Iwamatsu, A., Hirano, N., Ogawa, S., Tanaka, T., Mano, H., Yazaki, Y. and Hirai, H. A novel signaling molecule, p130, forms stable complexes in vivo with v-Crk and v-Src in a tyrosine phosphorylationdependent manner. EMBO J. 13 (1994) 3748-3756.
  • 18. Matsuda, M., Hashimoto, Y., Muroya, K., Hasegawa, H., Kurata, T., Tanaka, S., Nakamura, S. and Hattori, S. CRK protein binds to two guanine nucleotide-releasing proteins for the Ras family and modulates nerve growth factor-induced activation of Ras in PC12 cells. Mol. Cell. Biol. 14 (1994) 5495-5500.
  • 19. Beitner-Johnson, D. and LeRoith, D. Insulin-like growth factor-I stimulates tyrosine phosphorylation of endogenous c-Crk. J. Biol. Chem. 270 (1995) 5187-5190.
  • 20. Hashimoto, Y., Katayama, H., Kiyokawa, E., Ota, S., Kurata, T., Gotoh, N., Otsuka, N., Shibata, M. and Matsuda, M. Phosphorylation of CrkII adaptor protein at tyrosine 221 by epidermal growth factor receptor. J. Biol. Chem. 273 (1998) 17186-17191.
  • 21. Antoku, S. and Mayer, B.J. Distinct roles for Crk adaptor isoforms in actin reorganization induced by extracellular signals. J. Cell Sci. 122 (2009) 4228-4238.
  • 22. Akakura, S., Kar, B., Singh, S., Cho, L., Tibrewal, N., Sanokawa-Akakura, R., Reichman, C., Ravichandran, K.S. and Birge, R.B. C-terminal SH3 domain of CrkII regulates the assembly and function of the DOCK180/ELMO Rac-GEF. J. Cell Physiol. 204 (2005) 344-351.
  • 23. Kiyokawa, E., Hashimoto, Y., Kobayashi, S., Sugimura, H., Kurata, T. and Matsuda, M. Activation of Rac1 by a Crk SH3-binding protein, DOCK180. Genes Dev. 12 (1998) 3331-3336.
  • 24. Bell, E.S. and Park, M. Models of crk adaptor proteins in cancer. Genes Cancer 3 (2012) 341-352.
  • 25. Park, T.J. and Curran, T. Crk and Crk-like play essential overlapping roles downstream of disabled-1 in the Reelin pathway. J. Neurosci. 28 (2008) 13551-13562.
  • 26. Matsuki, T., Pramatarova, A. and Howell, B.W. Reduction of Crk and CrkL expression blocks reelin-induced dendritogenesis. J. Cell Sci. 121 (2008) 1869-1875.
  • 27. Feller, S.M. Crk family adaptors-signalling complex formation and biological roles. Oncogene 20 (2001) 6348-6371.
  • 28. Linghu, H., Tsuda, M., Makino, Y., Sakai, M., Watanabe, T., Ichihara, S., Sawa, H., Nagashima, K., Mochizuki, N. and Tanaka, S. Involvement of adaptor protein Crk in malignant feature of human ovarian cancer cell line MCAS. Oncogene 25 (2006) 3547-3556.
  • 29. Wang, H., Linghu, H., Wang, J., Che, Y.L., Xiang, T.X., Tang, W.X. and Yao, Z. W. The role of Crk/Dock180/Rac1 pathway in the malignant behavior of human ovarian cancer cell SKOV3. Tumour Biol. 31 (2010) 59-67.
  • 30. Takino, T., Nakada, M., Miyamori, H., Yamashita, J., Yamada, K.M. and Sato, H. CrkI adapter protein modulates cell migration and invasion in glioblastoma. Cancer Res. 63 (2003) 2335-2337.
  • 31. Miller, C.T., Chen, G., Gharib, T.G., Wang, H., Thomas, D.G., Misek, D.E., Giordano, T.J., Yee, J., Orringer, M.B., Hanash, S.M. and Beer, D.G. Increased C-CRK proto-oncogene expression is associated with an aggressive phenotype in lung adenocarcinomas. Oncogene 22 (2003) 7950-7957.
  • 32. Wan, B., Wang, X.R., Zhou, Y.B., Zhang, X., Huo, K. and Han, Z.G. C12ORF39, a novel secreted protein with a typical amidation processing signal. Biosci. Rep. 30 (2010) 1-10.
  • 33. Wan, B., Zhou, Y.B., Zhang, X., Zhu, H., Huo, K. and Han, Z.G. hOLFML1, a novel secreted glycoprotein, enhances the proliferation of human cancer cell lines in vitro. FEBS Lett. 582 (2008) 3185-3192.
  • 34. Bauler, T.J., Hendriks, W.J. and King, P.D. The FERM and PDZ domaincontaining protein tyrosine phosphatases, PTPN4 and PTPN3, are both dispensable for T cell receptor signal transduction. PLoS ONE 3 (2008) e4014.
  • 35. Schumacher, C., Knudsen, B.S., Ohuchi, T., Di Fiore, P.P., Glassman, R.H. and Hanafusa, H. The SH3 domain of Crk binds specifically to a conserved proline-rich motif in Eps15 and Eps15R. J. Biol. Chem. 270 (1995) 15341- 15347.
  • 36. Feller, S.M., Knudsen, B. and Hanafusa, H. c-Abl kinase regulates the protein binding activity of c-Crk. EMBO J. 13 (1994) 2341-2351.
  • 37. Matsuda, M., Tanaka, S., Nagata, S., Kojima, A., Kurata, T. and Shibuya, M. Two species of human CRK cDNA encode proteins with distinct biological activities. Mol. Cell. Biol. 12 (1992) 3482-3489.
  • 38. Ren, R., Ye, Z.S. and Baltimore, D. Abl protein-tyrosine kinase selects the Crk adapter as a substrate using SH3-binding sites. Genes Dev. 8 (1994) 783-795.
  • 39. Watanabe, T., Tsuda, M., Tanaka, S., Ohba, Y., Kawaguchi, H., Majima, T., Sawa, H. and Minami, A. Adaptor protein Crk induces Src-dependent activation of p38 MAPK in regulation of synovial sarcoma cell proliferation. Mol. Cancer Res. 7 (2009) 1582-1592.

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-32adb8e0-97f4-45c3-b68b-aba90e8bb2c2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.